Ontology-Based Recommendation of Editorial Products

  • Thiviyan ThanapalasingamEmail author
  • Francesco Osborne
  • Aliaksandr BirukouEmail author
  • Enrico Motta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11137)


Major academic publishers need to be able to analyse their vast catalogue of products and select the best items to be marketed in scientific venues. This is a complex exercise that requires characterising with a high precision the topics of thousands of books and matching them with the interests of the relevant communities. In Springer Nature, this task has been traditionally handled manually by publishing editors. However, the rapid growth in the number of scientific publications and the dynamic nature of the Computer Science landscape has made this solution increasingly inefficient. We have addressed this issue by creating Smart Book Recommender (SBR), an ontology-based recommender system developed by The Open University (OU) in collaboration with Springer Nature, which supports their Computer Science editorial team in selecting the products to market at specific venues. SBR recommends books, journals, and conference proceedings relevant to a conference by taking advantage of a semantically enhanced representation of about 27K editorial products. This is based on the Computer Science Ontology, a very large-scale, automatically generated taxonomy of research areas. SBR also allows users to investigate why a certain publication was suggested by the system. It does so by means of an interactive graph view that displays the topic taxonomy of the recommended editorial product and compares it with the topic-centric characterization of the input conference. An evaluation carried out with seven Springer Nature editors and seven OU researchers has confirmed the effectiveness of the solution.


Recommender systems Ontology User interface Scholarly ontology Scholarly data 



We would like to thank publishing editors at Springer Nature for assisting us in the evaluation of SBR and allowing us to access their large repositories of scholarly data.


  1. 1.
    Osborne, F., Motta, E.: Klink-2: integrating multiple web sources to generate semantic topic networks. In: Arenas, M., et al. (eds.) ISWC 2015, Part I. LNCS, vol. 9366, pp. 408–424. Springer, Cham (2015). Scholar
  2. 2.
    Osborne, F., Salatino, A., Birukou, A., Thanapalasingam, T., Motta, E.: Supporting Springer nature editors by means of semantic technologies. In: Nikitina, N., Song, D., Fokoue, A., Haase, P. (eds.) International Semantic Web Conference (Posters, Demos and Industry Tracks). CEUR Workshop Proceedings, vol. 1963. (2017)Google Scholar
  3. 3.
    Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The computer science ontology : a large-scale taxonomy of research areas. In: Vrandečić, D., et al. (eds.) ISWC 2018, Part II. LNCS, vol. 11137, pp. 187–205. Springer, AG (2018)Google Scholar
  4. 4.
    Osborne, F., Motta, E., Mulholland, P.: Exploring scholarly data with rexplore. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 460–477. Springer, Heidelberg (2013). Scholar
  5. 5.
    Osborne, F., Salatino, A., Birukou, A., Motta, E.: Automatic classification of springer nature proceedings with smart topic miner. In: Groth, P., et al. (eds.) ISWC 2016, Part II. LNCS, vol. 9982, pp. 383–399. Springer, Cham (2016). Scholar
  6. 6.
    Osborne, F., Mannocci, A., Motta, E.: Forecasting the spreading of technologies in research communities. In: Proceedings of the Knowledge Capture Conference (2017)Google Scholar
  7. 7.
    Osborne, F., Motta, E.: Pragmatic ontology evolution: reconciling user requirements and application performance. In: Vrandečić, D., et al. (eds.) ISWC 2018, Part II. LNCS, vol. 11137, pp. 495–512. Springer, AG (2018)Google Scholar
  8. 8.
    Birukou, A., Bryl, V., Eckert, K., Gromyko, A., Kaindl, M.: Springer LOD conference portal. Demo paper. In: Nikitina, N., Song, D., Fokoue, A., Haase, P. (eds.) International Semantic Web Conference (Posters, Demos and Industry Tracks). CEUR Workshop Proceedings, vol. 1963. (2017)Google Scholar
  9. 9.
    Hammond, T., Pasin, M., Theodoridis, E.: Data integration and disintegration: managing springer nature SciGraph with SHACL and OWL. In: Nikitina, N., Song, D., Fokoue, A., Haase, P. (eds.) International Semantic Web Conference (Posters, Demos and Industry Tracks). CEUR Workshop Proceedings, vol. 1963. (2017)Google Scholar
  10. 10.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24, 513–523 (1988)CrossRefGoogle Scholar
  11. 11.
    Peroni, S., Dutton, A., Gray, T., Shotton, D.: Setting our bibliographic references free: towards open citation data. J. Doc. 71, 253–277 (2015)CrossRefGoogle Scholar
  12. 12.
    Knoth, P., Zdrahal, Z.: CORE: three access levels to underpin open access. D-Lib Mag. 18(11–12), 4 (2012)Google Scholar
  13. 13.
    Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook. Springer, Boston (2015). Scholar
  14. 14.
    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007). Scholar
  15. 15.
    Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston, MA (2011). Scholar
  16. 16.
    Sieg, A., Mobasher, B., Burke, R.: Web search personalization with ontological user profiles. In: Conference on Information and Knowledge Management, p. 525. ACM Press, New York (2007)Google Scholar
  17. 17.
    de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 119–159. Springer, Boston, MA (2015). Scholar
  18. 18.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22, 54–88 (2004)CrossRefGoogle Scholar
  19. 19.
    Thiagarajan, R., Manjunath, G., Stumptner, M.: Finding experts by semantic matching of user profiles. In: International Semantic Web Conference Personal Identification and Collaborations: Knowledge Mediation and Extraction (PICKME 2008), pp. 7–18 (2008)Google Scholar
  20. 20.
    Razmerita, L., Angehrn, A., Maedche, A.: Ontology-based user modeling for knowledge management systems. In: Brusilovsky, P., Corbett, A., de Rosis, F. (eds.) UM 2003. LNCS (LNAI), vol. 2702, pp. 213–217. Springer, Heidelberg (2003). Scholar
  21. 21.
    Birukou, A., Blanzieri, E., Giorgini, P.: A multi-agent system that facilitates scientific publications search. In: International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 265–272. ACM Press (2006)Google Scholar
  22. 22.
    Colombo-Mendoza, L.O., Valencia-García, R., Rodríguez-González, A., Alor-Hernández, G., Samper-Zapater, J.J.: RecomMetz: a context-aware knowledge-based mobile recommender system for movie showtimes. Expert Syst. Appl. 42, 1202–1222 (2015)CrossRefGoogle Scholar
  23. 23.
    Cantador, I., Bellogín, A., Castells, P.: A multilayer ontology-based hybrid recommendation model. AI Commun. 21, 203–210 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents (2011)Google Scholar
  25. 25.
    Gábor, K., Zargayouna, H., Buscaldi, D., Tellier, I., Charnois, T.: Semantic annotation of the ACL anthology corpus for the automatic analysis of scientific literature (2016)Google Scholar
  26. 26.
    Ronzano, F., Saggion, H.: Dr. Inventor Framework: Extracting Structured Information from Scientific Publications (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK
  2. 2.Springer-Verlag GmbHHeidelbergGermany

Personalised recommendations