Semantic Technologies for Healthy Lifestyle Monitoring

  • Mauro DragoniEmail author
  • Marco Rospocher
  • Tania Bailoni
  • Rosa Maimone
  • Claudio Eccher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11137)


People are nowadays well aware that adopting healthy lifestyles, i.e., a combination of correct diet and adequate physical activity, may significantly contribute to the prevention of chronic diseases. We present the use of Semantic Web technologies to build a system for supporting and motivating people in following healthy lifestyles. Semantic technologies are used for modeling all relevant information, and for fostering reasoning activities by combining real-time user-generated data and domain expert knowledge. The proposed solution is validated in a realistic scenario and lessons learned from this experience are reported.


Monitoring Rules Entailment Rules 2-week Rule Workplace Health Promotion (WHP) Healthy Lifestyle Recommendations 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Intille, S.S.: Ubiquitous computing technology for just-in-time motivation of behavior change. In: UbiHealth 2003: 2nd International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications (2003)Google Scholar
  2. 2.
    Dragoni, M., Bailoni, T., Eccher, C., Guerini, M., Maimone, R.: A semantic-enabled platform for supporting healthy lifestyles. In: Seffah, A., Penzenstadler, B., Alves, C., Peng, X., (eds.) Proceedings of the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco, 3–7 April 2017, pp. 315–322. ACM (2017)Google Scholar
  3. 3.
    Izumi, S., Kuriyama, D., Itabashi, G., Togashi, A., Kato, Y., Takahashi, K.: An ontology-based advice system for health and exercise. In: IMSA, pp. 95–100 (2006)Google Scholar
  4. 4.
    Nassabi, M.H., op den Akker, H., Vollenbroek-Hutten, M.M.R.: An ontology-based recommender system to promote physical activity for pre-frail elderly. In: Mensch and Computer Workshopband, pp. 181–184 (2014)Google Scholar
  5. 5.
    Benmimoune, L., Hajjam, A., Ghodous, P., Andres, E., Talha, S., Hajjam, M.: Ontology-based medical decision support system to enhance chronic patients’ lifestyle within e-care telemonitoring platform. Stud. Health Technol. Inform. 213, 279–282 (2015)Google Scholar
  6. 6.
    Mikolajczak, S., Ruette, T., Tsiporkova, E., Angelova, M.,V.,B.: A semantic reasoning engine for lifestyle profiling in support of personalised coaching. In: International Conference on Global Health Challenges, pp. 79–83 (2015)Google Scholar
  7. 7.
    Jawaid, H., Latif, K., Mukhtar, H., Ahmad, F., Raza, S.A.: Healthcare data validation and conformance testing approach using rule-based reasoning. In: Yin, X., Ho, K., Zeng, D., Aickelin, U., Zhou, R., Wang, H. (eds.) HIS 2015. LNCS, vol. 9085, pp. 241–246. Springer, Cham (2015). Scholar
  8. 8.
    Hommersom, A., Lucas, P.J.F.: An Introduction to Knowledge Representation and Reasoning in Healthcare. In: Hommersom, A., Lucas, P.J.F. (eds.) Foundations of Biomedical Knowledge Representation. LNCS (LNAI), vol. 9521, pp. 9–32. Springer, Cham (2015). Scholar
  9. 9.
    Mamykina, L., Levine, M.E., Davidson, P.G., Smaldone, A.M., Elhadad, N., Albers, D.J.: Data-driven health management: reasoning about personally generated data in diabetes with information technologies. JAMIA 23(3), 526–531 (2016)Google Scholar
  10. 10.
    Rospocher, M., Serafini, L.: An ontological framework for decision support. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 239–254. Springer, Heidelberg (2013). Scholar
  11. 11.
    Bailoni, T., Dragoni, M., Eccher, C., Guerini, M., Maimone, R.: Healthy lifestyle support: the PerKApp ontology. In: Dragoni, M., Poveda-Villalón, M., Jimenez-Ruiz, E. (eds.) OWLED/ORE -2016. LNCS, vol. 10161, pp. 15–23. Springer, Cham (2017). Scholar
  12. 12.
    Dragoni, M., Bosca, A., Casu, M., Rexha, A.: Modeling, managing, exposing, and linking ontologies with a wiki-based tool. In: LREC, pp. 1668–1675 (2014)Google Scholar
  13. 13.
    Eccher, C., Ferro, A., Seyfang, A., Rospocher, M., Miksch, S.: Modeling clinical protocols using semantic MediaWiki: the case of the oncocure project. In: Riaño, D. (ed.) K4HelP 2008. LNCS (LNAI), vol. 5626, pp. 42–54. Springer, Heidelberg (2009). Scholar
  14. 14.
    Corcoglioniti, F., Rospocher, M., Mostarda, M., Amadori, M.: Processing billions of RDF triples on a single machine using streaming and sorting. In: ACM SAC, pp. 368–375 (2015)Google Scholar
  15. 15.
    Dragoni, M., Bailoni, T., Maimone, R., Eccher, C.: HeLiS: an ontology for supporting healthy lifestyles. In: The Semantic Web - ISWC 2018–17th International Semantic Web Conference. Lecture Notes in Computer Science, Monterey, California, USA, 8–12 October 2018. Springer (2018)Google Scholar
  16. 16.
    Di Francescomarino, C., Ghidini, C., Rospocher, M.: Evaluating wiki collaborative features in ontology authoring. IEEE Trans. Knowl. Data Eng. 26(12), 2997–3011 (2014)CrossRefGoogle Scholar
  17. 17.
    Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability problems. In: Proceedings of ACM INTERCHI 1993 Conference, pp. 24–29 (1993)Google Scholar
  18. 18.
    Bangor, A., Kortum, P., Miller, J.: Determining what individual sus scores mean: adding an adjective rating scale. J. Usability Stud. 4, 114–123 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mauro Dragoni
    • 1
    Email author
  • Marco Rospocher
    • 1
  • Tania Bailoni
    • 1
  • Rosa Maimone
    • 1
  • Claudio Eccher
    • 1
  1. 1.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations