Advertisement

Identification of Optimum Image Capturing Technique for Corneal Segmentation—A Survey

  • H. James Deva KoreshEmail author
  • Shanty Chacko
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 30)

Abstract

Segmentation of corneal layers plays an important role in diagnosing the corneal disease and it also helpful for planning the refractive surgeries when measuring the corneal layer thicknesses. There are several imaging instruments available for capturing the image of the cornea which can be used for segmentation and thickness measurement of corneal layers. The work describes the various available imaging instruments along with the necessity of imaging the cornea. It also suggests a reliable imaging method for capturing the cornea for segmentation by doing a comparative study. It will be helpful for identifying the best image capture method for implementing the image processing technique for further segmentation and measurement flow from the image.

Keywords

Cornea layers Cornea segmentation Cornea thickness Optical coherence tomography Pentacam Orbscan Ultrasound pachymetry 

References

  1. 1.
    Rabsilber TM, Khoramnia R, Auffarth GU (2006) Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 32(3):456–459CrossRefGoogle Scholar
  2. 2.
    Gary H (2017) Cornea of the eye—definition and detailed illustration. All about vision. www.allaboutvision.com/resources/cornea.htm
  3. 3.
    DelMonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37(3):588–598CrossRefGoogle Scholar
  4. 4.
    Eichel J, Mishra A, Fieguth P, Clausi D, Bizheva K (2009) A novel algorithm for extraction of the layers of the cornea. In: Canadian conference on computer and robot vision, CRV’09, pp 313–320. IEEEGoogle Scholar
  5. 5.
    Alila Medical Media (2016) LASIK or PRK? Which is right for me? Animation. Filmed [Jan 2016]. YouTube video, 03:50, Posted [Jan 2016]. https://www.youtube.com/watch?v=dKANhIU7Sxk
  6. 6.
    Sinjab Academy (2015) Concepts in refractive surgery—part 2. Filmed [Oct 2015]. YouTube video, 22:10, Posted [Oct 2015]. https://www.youtube.com/watch?v=E2unBK5FkLI
  7. 7.
    Mazzotta C, Raiskup F, Baiocchi S, Scarcelli G, Friedman MD, Traversi C (2017) ACXL beyond Keratoconus: post-LASIK ectasia, post-RK ectasia and pellucid marginal degeneration. In: Management of early progressive corneal ectasia. Springer, Cham, pp 169–196CrossRefGoogle Scholar
  8. 8.
    Paul T, Lim M, Starr CE, Lloyd HO, Jackson Coleman D, Silverman RH (2008) Central corneal thickness measured by the Orbscan II system, contact ultrasound pachymetry, and the Artemis 2 system. J Cataract Refract Surg 34(11):1906–1912CrossRefGoogle Scholar
  9. 9.
    Liu Z, Huang AJ, Pflugfelder SC (1999) Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system. Br J Ophthalmol 83(7):774–778CrossRefGoogle Scholar
  10. 10.
    Matsuda J, Hieda O, Kinoshita S (2008) Comparison of central corneal thickness measurements by Orbscan II and Pentacam after corneal refractive surgery. Jpn J Ophthalmol 52(4):245CrossRefGoogle Scholar
  11. 11.
    Colling AJ (2010) A comparison of three methods of measuring central corneal thickness in normal and thinned corneas. Ph.D. dissertation, The Ohio State UniversityGoogle Scholar
  12. 12.
    Oliveira Cristina M, Ribeiro Celina, Franco Sandra (2011) Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin Exp Optom 94(1):33–42CrossRefGoogle Scholar
  13. 13.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254(5035):1178–1181Google Scholar
  14. 14.
    Fujimoto JG, Drexler W, Schuman JS, Hitzenberger CK (2009) Optical coherence tomography (OCT) in ophthalmology: introduction. Opt Express 17(5):3978–3979CrossRefGoogle Scholar
  15. 15.
    Hurmeric V, Yoo SH, Mutlu FM (2012) Optical coherence tomography in cornea and refractive surgery. Expert Rev Ophthalmol 7(3):241–250CrossRefGoogle Scholar
  16. 16.
    Otchere H, Sorbara L (2017) Repeatability of topographic corneal thickness in keratoconus comparing Visante™ OCT and Oculus Pentacam HR® topographer. Contact Lens Anter Eye 40(4):217–223CrossRefGoogle Scholar
  17. 17.
    Martínez-Albert N, Esteve-Taboada JJ, Montés-Micó R (2018) Repeatability assessment of anterior segment biometric measurements under accommodative and nonaccommodative conditions using an anterior segment OCT. Graefe’s Archive Clin Exp Ophthalmol 256(1):113–123CrossRefGoogle Scholar
  18. 18.
    Ramesh PV, Jha KN, Srikanth K (2017) Comparison of central corneal thickness using anterior segment optical coherence tomography versus ultrasound pachymetry. J Clin Diagn Res JCDR 11(8):NC08Google Scholar
  19. 19.
    Antonios R, Abdul Fattah M, Maalouf F, Abiad B, Awwad ST (2016) Central corneal thickness after cross-linking using high-definition optical coherence tomography, ultrasound, and dual scheimpflug tomography: a comparative study over one year. Am J Ophthalmol 167:38–47CrossRefGoogle Scholar
  20. 20.
    Xu Z, Peng M, Jiang J, Yang C, Zhu W, Fan L, Shen M (2016) Reliability of Pentacam HR thickness maps of the entire cornea in normal, post-laser in situ Keratomileusis, and keratoconus eyes. Am J Ophthalmol 162:74–82CrossRefGoogle Scholar
  21. 21.
    Temstet C, Sandali O, Bouheraoua N, Hamiche T, Galan A, El Sanharawi M, Basli E, Laroche L, Borderie V (2015) Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus. J Cataract Refract Surg 41(4):812–820CrossRefGoogle Scholar
  22. 22.
    Kuerten D, Plange N, Koch EC, Koutsonas A, Walter P, Fuest M (2015) Central corneal thickness determination in corneal edema using ultrasound pachymetry, a Scheimpflug camera, and anterior segment OCT. Graefe’s Archive Clin Exp Ophthalmol 253(7):1105–1109CrossRefGoogle Scholar
  23. 23.
    Randleman JB, Lynn MJ, Perez-Straziota CE, Weissman HM, Kim SW (2015) Comparison of central and peripheral corneal thickness measurements with scanning-slit, Scheimpflug and Fourier-domain ocular coherence tomography. Br J Ophthalmol 99(9):1176–1181CrossRefGoogle Scholar
  24. 24.
    Lin C-W, Wang T-H, Huang Y-H, Huang J-Y (2013) Agreement and repeatability of central corneal thickness measurements made by ultrasound pachymetry and anterior segment optical coherence tomography. Taiwan J Ophthalmol 3(3):98–102CrossRefGoogle Scholar
  25. 25.
    Yazici AT, Bozkurt E, Alagoz C, Alagoz N, Pekel G, Kaya V, Yilmaz OF (2010) Central corneal thickness, anterior chamber depth, and pupil diameter measurements using Visante OCT, Orbscan, and Pentacam. J Refract Surg 26(2):127–133CrossRefGoogle Scholar
  26. 26.
    Doors M, Cruysberg LPJ, Berendschot TTJM, de Brabander J, Verbakel F, Webers CAB, Nuijts RMMA (2009) Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation. Graefe’s Archive Clin Exp Ophthalmol 247(8):1139–1146CrossRefGoogle Scholar
  27. 27.
    Cheng ACK, Rao SK, Lau S, Lam DSC, Leung CKS (2008) Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia. J Refract Surg 24(4):361–365Google Scholar
  28. 28.
    Kim HY, Budenz DL, Lee PS, Feuer WJ, Barton Keith (2008) Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry. Am J Ophthalmol 145(2):228–232CrossRefGoogle Scholar
  29. 29.
    Li EYM, Mohamed S, Leung CKS, Rao SK, Cheng ACK, Cheung CYL, Lam DSC (2007) Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography. Ophthalmology 114(10):1842–1847CrossRefGoogle Scholar
  30. 30.
    Ho T, Cheng ACK, Rao SK, Lau S, Leung CKS, Lam DSC (2007) Central corneal thickness measurements using Orbscan II, Visante, ultrasound, and Pentacam pachymetry after laser in situ keratomileusis for myopia. J Cataract Refract Surg 33(7):1177–1182CrossRefGoogle Scholar
  31. 31.
    Zhao PS, Wong TY, Wong W-L, Saw S-M, Aung T (2007) Comparison of central corneal thickness measurements by visante anterior segment optical coherence tomography with ultrasound pachymetry. A J Ophthalmol 143(6):1047–1049CrossRefGoogle Scholar
  32. 32.
    Haque S, Simpson T, Jones L (2006) Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography. J Refract Surg 22(5):486–493CrossRefGoogle Scholar
  33. 33.
    Leung DYL, Lam DKT, Yeung BYM, Lam DSC (2006) Comparison between central corneal thickness measurements by ultrasound pachymetry and optical coherence tomography. Clin Exp Ophthalmol 34(8):751–754CrossRefGoogle Scholar
  34. 34.
    Li Y, Shekhar R, Huang D (2006) Corneal pachymetry mapping with high-speed optical coherence tomography. Ophthalmology 113(5):792–799CrossRefGoogle Scholar
  35. 35.
    Lackner B, Schmidinger G, Pieh S, Funovics MA, Skorpik C (2005) Repeatability and reproducibility of central corneal thickness measurement with Pentacam, Orbscan, and ultrasound. Optom Vis Sci 82(10):892–899CrossRefGoogle Scholar
  36. 36.
    Fishman GR, Pons ME, Seedor JA, Liebmann JM, Ritch R (2005) Assessment of central corneal thickness using optical coherence tomography. J Cataract Refract Surg 31(4):707–711CrossRefGoogle Scholar
  37. 37.
    Wong ACM, Wong CC, Yuen NSY, Hui SP (2002) Correlational study of central corneal thickness measurements on Hong Kong Chinese using optical coherence tomography, Orbscan and ultrasound pachymetry. Eye 16(6):715CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringKarunya Institute of Technology and SciencesCoimbatoreIndia
  2. 2.Department of Electrical and Electronics EngineeringKarunya Institute of Technology and SciencesCoimbatoreIndia

Personalised recommendations