Advertisement

Person Identification Using Iris Recognition: CVPR_IRIS Database

  • Usha R. KambleEmail author
  • L. M. Waghmare
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 30)

Abstract

In recent days iris is as one of the useful traits for authentication using biometric recognition. Almost all publicly available iris image databases contain data correspondent to heavy imaging constraints and suitable to evaluate by various algorithms (CASIA Iris Image Database [1]; Proença et al. in IEEE Trans Pattern Anal Mach Intell 32(8):1529–1535, 2010 [2]). This paper is first to prepare our own IRIS IMAGE DATABASE and make the availability of it to the new researchers. We have thus proposed our own database named as CVPR_IRIS DATABASE with not heavy imaging constraints. This set up contains Iris Image Capture IR Sensitive CCD camera by which eye images are captured in the visible lighting conditions with IRLED source at a distance. Clear images from this database are separated from noisy images by quality assessment technique. Thus proposed CVPR_IRIS DATABASE containing total 485 eye images of 49 individuals is made available for researchers concerned with the implementation of algorithms based on research in iris recognition. Second using proposed database we have proved good accuracy using 2D Discrete Wavelet Transform.

Keywords

Iris recognition Biometrics Non cooperative images Iris image acquisition Visible-light iris images 

Notes

Acknowledgements

The author acknowledges the technical and nontechnical support given by CVPR Lab authorized faculty and TEQIP.

References

  1. 1.
  2. 2.
    Proença H, Filipe S, Santos R, Oliveira J, Alexandre LA (2010) IEEE Trans Pattern Anal Mach Intell 32(8):1529–1535CrossRefGoogle Scholar
  3. 3.
    Daugman J (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1048–1161CrossRefGoogle Scholar
  4. 4.
    Boles W, Boashash B (1993) A human identification technique using images of the iris and wavelet transform. IEEE Trans Signal Process 46(4):1185–1188CrossRefGoogle Scholar
  5. 5.
    Wildes RP (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363CrossRefGoogle Scholar
  6. 6.
    Daugman J (2001) Statistical richness of visual information: update on recognizing persons by iris patterns. Int J Comput Vis 45(1):25–38CrossRefGoogle Scholar
  7. 7.
    Ma L, Wrag Y, Tam T (2002) Iris recognition using circular symmetric filters. In: 16th international conference on pattern recognition, vol 2, pp 414–417Google Scholar
  8. 8.
    Tisse C-L, Torres L, Robert M (2002) Person identification based on iris patterns. In: Proceedings of the 15th international conference on vision interface, pp 215–229Google Scholar
  9. 9.
    Sanchez-Reillo R, Sanchez-Avila C, De Martin-Roche D (2002) Iris recognition for biometric identification using dyadic wavelet transform zero crossing. In: Proceeding of IEEE 35th Carnahan international conference on security technology, pp 272–277Google Scholar
  10. 10.
    Daugman J (2004) How iris recognition works. IEEE Trans Circ Syst Video Technol 14:21–30CrossRefGoogle Scholar
  11. 11.
    Sanchez-Avila C, Sanchez-Reillo R (2002) Iris-based biometric recognition using dyadic wavelet transform. IEEE Aerosp Electron Syst Mag 17:3–6CrossRefGoogle Scholar
  12. 12.
    Ma L, Tan T, Wang Y, Zhang D (2003) Personal recognition based on iris texture analysis. IEEE Trans Pattern Anal Mach Intell 25(12):1519–1533CrossRefGoogle Scholar
  13. 13.
    Poursaberi A, Araabi BN (2007) Iris recognition for partially occluded images, methodology and sensitivity analysis. EURASIP J Adv Signal Process (Springer open J) 2007, Article ID 36751:1–12Google Scholar
  14. 14.
    Sun Z, Wang Y, Tan T, Cui J (2005) Improving iris recognition accuracy via cascaded classifier. IEEE Trans Syst Man Cybern Part C Appl Rev 35(3):435–440CrossRefGoogle Scholar
  15. 15.
    Thornton J, Savvides M (2007) Kumar V (2007) A Bayesian approach to deformed pattern matching of iris images. IEEE Trans Pattern Anal Mach Intell 29(4):596–606CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Shri Guru Gobind Singhji Institute of Engineering and TechnologyNandedIndia

Personalised recommendations