Membrane Domains Under Cellular Recycling

  • S. Alex Rautu
  • Matthew S. TurnerEmail author


Living cells are bounded by sac-like membranes that play a crucial role in almost every cellular process. These membranes are highly dynamic, two-dimensional systems, with components that are continuously exchanged with rest of the living cell by the secretion and absorption of small vesicles with sizes of the order of tens or hundreds of nanometers in diameter. This constant recycling of the cell membranes leads to a complete turnover of its constituents on the order of tens of minutes. The presence of distinct nano-scale microphase separated domains in biomembranes has been confirmed by numerous experiments. In this chapter we address recent advances in our understanding of the role of recycling in the control of membrane microdomain formation. These results relate to both the steady-state distribution of domain sizes and the transient response of this distribution following perturbation of cellular synthesis, transport, or recycling pathways. This gives a route to testing and calibrating theoretical models from experiments that measure the domain size distribution.


Endocytosis Membrane Microdomain Raft Recycling 



We acknowledge longstanding collaboration with Dr. P. Sens (Paris), and funding from UK EPSRC under Grant No. EP/I005439/1 (M.S.T.) and Simons Foundation (S.A.R).


  1. 1.
    Alberts B et al (2008) Molecular biology of the cell, 5th edn. Garland Science, New YorkGoogle Scholar
  2. 2.
    Heimburg T (2007) Thermal biophysics of membranes. Wiley-VCH, Berlin,CrossRefGoogle Scholar
  3. 3.
    Lenne P-F et al (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256CrossRefGoogle Scholar
  4. 4.
    Hao M (2000) Characterization of rapid membrane internalization and recycling. J Biol Chem 275:15279–15286CrossRefGoogle Scholar
  5. 5.
    Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Natl. Rev. Mol. Cell Biol. 7:456–62CrossRefGoogle Scholar
  6. 6.
    Daumas F et al (2003) Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys J 84:356–66CrossRefGoogle Scholar
  7. 7.
    Destainville N, Dumas F, Salomé L (2008) What do diffusion measurements tell us about membrane compartmentalisation? Emergence of the role of interprotein interactions. J Chem Biol 1:37–48CrossRefGoogle Scholar
  8. 8.
    Ying W, Huerta G, Steinberg S, Zúñiga M (2009) Time series analysis of particle tracking data for molecular motion on the cell membrane. Bull Math Biol 71:1967–2024CrossRefGoogle Scholar
  9. 9.
    Robson A, Burrage K, Leake MC (2012) Inferring diffusion in single live cells at the single-molecule level. Phil Trans R Soc B 368:20120029CrossRefGoogle Scholar
  10. 10.
    Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21:430–439CrossRefGoogle Scholar
  11. 11.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRefGoogle Scholar
  12. 12.
    Komura S, Andelman D (2014) Physical aspects of heterogeneities in multi-component lipid membranes. Adv Colloid Interface Sci 208:34–46CrossRefGoogle Scholar
  13. 13.
    Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50:S323–S328CrossRefGoogle Scholar
  14. 14.
    Mouritsen OG, Bagatolli LA (2016) Life – as a matter of fat: lipids in a membrane biophysics, 2nd edn. Springer, LondonCrossRefGoogle Scholar
  15. 15.
    Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697CrossRefGoogle Scholar
  16. 16.
    Leslie M (2011) Do lipid rafts exist? Science 334:1046–1047CrossRefGoogle Scholar
  17. 17.
    Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New YorkCrossRefGoogle Scholar
  18. 18.
    Lipowsky R, Dimova R (2003) Domains in membranes and vesicles. J Phys Condens Matter 15:S31–S45CrossRefGoogle Scholar
  19. 19.
    Ipsen JH, Karlström G, Mouritsen OG, Wennerström H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172CrossRefGoogle Scholar
  20. 20.
    Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185CrossRefGoogle Scholar
  21. 21.
    Goñi FM et al. (2008) Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim Biophys Acta 1781:665–684CrossRefGoogle Scholar
  22. 22.
    Veatch SL, Keller SL (2005) Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys Rev Lett 94:148101CrossRefGoogle Scholar
  23. 23.
    Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598CrossRefGoogle Scholar
  24. 24.
    Mouritsen OG, Bagatolli LA (2015) Lipid domains in model membranes: a brief historical perspective. Essays Biochem 57:1–19CrossRefGoogle Scholar
  25. 25.
    Arumugam S, Bassereau P (2015) Membrane nanodomains: contribution of curvature and interaction with proteins and cytoskeleton. Essays Biochem 57:109–119CrossRefGoogle Scholar
  26. 26.
    Bagatolli LA, Sunil Kumar PB (2009) Phase behavior of multicomponent membranes: Experimental and computational techniques. Soft Matter 5:3234CrossRefGoogle Scholar
  27. 27.
    Komura S, Shirotori H, Olmsted PD, Andelman D (2004) Lateral phase separation in mixtures of lipids and cholesterol. Eur Lett 67:321–327CrossRefGoogle Scholar
  28. 28.
    Bray A (1994) Theory of phase-ordering kinetics. Adv Phys 43:357–459CrossRefGoogle Scholar
  29. 29.
    Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. The Journal of Cell Biology 185:381–385. CrossRefGoogle Scholar
  30. 30.
    Yethiraj A, Weisshaar JC (2007) Why are lipid rafts not observed in vivo? Biophys J 93:3113–3119CrossRefGoogle Scholar
  31. 31.
    Stottrup BL, Veatch SL, Keller SL (2004) Nonequilibrium behavior in supported lipid membranes containing cholesterol. Biophys J 86:2942–2950CrossRefGoogle Scholar
  32. 32.
    Lipowsky R, Rouhiparkouhi T, Discher DE, Weikl TR (2013) Domain formation in cholesterolphospholipid membranes exposed to adhesive surfaces or environments. Soft Matter 9:8438CrossRefGoogle Scholar
  33. 33.
    Stone HA, Armand A (1998) Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J Fluid Mech 369:151–173Google Scholar
  34. 34.
    Liu J, Qi S, Groves JT, Chakraborty AK (2005) Phase segregation on different length scales in a model cell membrane system. J Phys Chem B 109:19960–19969CrossRefGoogle Scholar
  35. 35.
    Wallace EJ, Hooper NM, Olmsted PD (2006) Effect of hydrophobic mismatch on phase behavior of lipid membranes. Biophys J 90:4104–4118CrossRefGoogle Scholar
  36. 36.
    García-Sáez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282:33537–33544CrossRefGoogle Scholar
  37. 37.
    Lin Q, London E (2013) Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. J Biol Chem 288:1340–1352CrossRefGoogle Scholar
  38. 38.
    Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824CrossRefGoogle Scholar
  39. 39.
    Baumgart T, Das S, Webb WW, Jenkins JT (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys J 89:1067–1080CrossRefGoogle Scholar
  40. 40.
    Ogunyankin MO, Longo ML (2013) Metastability in pixelation patterns of coexisting fluid lipid bilayer phases imposed by e-beam patterned substrates. Soft Matter 9:2037–2046CrossRefGoogle Scholar
  41. 41.
    Honerkamp-Smith AR, Veatch SL, Keller SL (2009) An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim Biophys Acta 1788:53–63CrossRefGoogle Scholar
  42. 42.
    Giang H, Shlomovitz R, Schick M (2015) Microemulsions, modulated phases and macroscopic phase separation: a unified picture of rafts. Essays Biochem 57:21–32CrossRefGoogle Scholar
  43. 43.
    Turner MS, Sens P, Socci ND (2005) Nonequilibrium raftlike membrane domains under continuous recycling. Phys Rev Lett 95:168301CrossRefGoogle Scholar
  44. 44.
    Honerkamp-Smith AR, et al (2008) Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys J 95:236–246CrossRefGoogle Scholar
  45. 45.
    Kardar M (2007) Statistical physics of particles. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. 46.
    Veatch SL, Soubias O, Keller SL, Gawrisch K (2007) Critical fluctuations in domain-forming lipid mixtures. Proc Natl Acad Sci USA 104:17650–17655CrossRefGoogle Scholar
  47. 47.
    Veatch SL, et al (2008) Critical fluctuations in plasma membrane vesicles. ACS Chem Biol 3:287–293CrossRefGoogle Scholar
  48. 48.
    Machta BB, Papanikolaou S, Sethna JP, Veatch SL (2011) Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys J 100:1668–1677CrossRefGoogle Scholar
  49. 49.
    Palmieri B, Yamamoto T, Brewster RC, Safran SA (2014) Line active molecules promote inhomogeneous structures in membranes: theory, simulations and experiments. Adv Colloid Interface Sci 208:58–65CrossRefGoogle Scholar
  50. 50.
    Nicolini C, et al (2006) Visualizing association of N-Ras in lipid microdomains: influence of domain structure and interfacial adsorption. J Am Chem Soc 128:192–201CrossRefGoogle Scholar
  51. 51.
    Yamamoto T, Brewster R, Safran SA (2010) Chain ordering of hybrid lipids can stabilize domains in saturated/hybrid/cholesterol lipid membranes. Eur Lett 91:28002CrossRefGoogle Scholar
  52. 52.
    Brewster R, Safran SA (2010) Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids. Biophys J 98:L21–L23CrossRefGoogle Scholar
  53. 53.
    Palmieri B, Safran SA (2013) Hybrid lipids increase the probability of fluctuating nanodomains in mixed membranes. Langmuir 29:5246–5261CrossRefGoogle Scholar
  54. 54.
    Palmieri B, Safran SA (2013) Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes. Phys Rev E 88:032708CrossRefGoogle Scholar
  55. 55.
    Hirose Y, Komura S, Andelman D (2009) Coupled modulated bilayers: a phenomenological model. ChemPhysChem 10:2839–2846CrossRefGoogle Scholar
  56. 56.
    Hirose Y, Komura S, Andelman D (2012) Concentration fluctuations and phase transitions in coupled modulated bilayers. Phys Rev E 86:021916CrossRefGoogle Scholar
  57. 57.
    Veatch SL, Gawrisch K, Keller SL (2006) Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys J 90:4428–4436CrossRefGoogle Scholar
  58. 58.
    Schick M (2012) Membrane heterogeneity: Manifestation of a curvature-induced microemulsion. Phys Rev E 85:1–4CrossRefGoogle Scholar
  59. 59.
    Andelman D, Rosensweig RE (2009) Modulated phases: review and recent results. J Phys Chem B 113:3785–3798CrossRefGoogle Scholar
  60. 60.
    Leibler S, Andelman D (1987) Ordered and curved meso-structures in membranes and amphiphilic films. J Phys Fr 48:2013–2018CrossRefGoogle Scholar
  61. 61.
    Rautu SA, Rowlands G, Turner MS (2015) Membrane Composition Variation and Underdamped Mechanics near Transmembrane Proteins and Coats. Phys Rev Lett 114:098101CrossRefGoogle Scholar
  62. 62.
    Shlomovitz R, Schick M (2013) Model of a raft in both leaves of an asymmetric lipid bilayer. Biophys J 105:1406–1413CrossRefGoogle Scholar
  63. 63.
    Mayor S, Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5:231–240CrossRefGoogle Scholar
  64. 64.
    Gowrishankar K, et al (2012) Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149:1353–1367CrossRefGoogle Scholar
  65. 65.
    Tang Q, Edidin M (2001) Vesicle trafficking and cell surface membrane patchiness. Biophys J 81:196–203CrossRefGoogle Scholar
  66. 66.
    Foret L (2005) A simple mechanism of raft formation in two-component fluid membranes. Eur Lett 71:508–514CrossRefGoogle Scholar
  67. 67.
    Glotzer SC, Di Marzio EA, Muthukumar M (1995) Reaction-controlled morphology of phase-separating mixtures. Phys Rev Lett 74:2034–2037CrossRefGoogle Scholar
  68. 68.
    Foret L (2012) Aggregation on a membrane of particles undergoing active exchange with a reservoir. Eur Phys J E 35:12CrossRefGoogle Scholar
  69. 69.
    Gómez J, Sagués F, Reigada R (2008) Actively maintained lipid nanodomains in biomembranes. Phys Rev E 77:021907CrossRefGoogle Scholar
  70. 70.
    Gómez J, Sagués F, Reigada R (2009) Nonequilibrium patterns in phase-separating ternary membranes. Phys Rev E 80:011920CrossRefGoogle Scholar
  71. 71.
    Fan J, Sammalkorpi M, Haataja M (2010) Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane. Phys Rev E 81:011908CrossRefGoogle Scholar
  72. 72.
    Vagne Q, Turner MS, Sens P (2015) Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions. PLoS One 10:e0143470CrossRefGoogle Scholar
  73. 73.
    Camacho J (2001) Scaling in steady-state aggregation with injection. Phys Rev E 63:046112CrossRefGoogle Scholar
  74. 74.
    Connaughton C, Krapivsky PL (2010) Aggregation-fragmentation processes and decaying three-wave turbulence. Phys Rev E 81:035303(R)Google Scholar
  75. 75.
    Leyvraz F (2003) Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys Rep 383:95–212CrossRefGoogle Scholar
  76. 76.
    Rautu SA, Rowlands G, Turner MS (2018) Size-dependent recycling of membrane clusters. Europhys Lett 21:58004CrossRefGoogle Scholar
  77. 77.
    Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113CrossRefGoogle Scholar
  78. 78.
    Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical functions. Cambridge University Press, New YorkGoogle Scholar
  79. 79.
    Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover Publications Inc., New YorkGoogle Scholar
  80. 80.
    Truong Quang B-A, Mani M, Markova O, Lecuit T, Lenne P-F (2013) Principles of E-cadherin supramolecular organization in vivo. Curr Biol 23:2197–2207CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WarwickCoventryUK
  2. 2.National Centre for Biological SciencesUAS-GKVK CampusBangaloreIndia
  3. 3.Centre for Complexity ScienceUniversity of WarwickCoventryUK

Personalised recommendations