Advertisement

Lipid Rafts: A Personal Account

  • Kai Simons
Chapter

Abstract

The lipid raft concept of membrane sub-compartmentalization was introduced in 1997 and originated from studies on epithelial cell surface polarity. It was the first time that membrane lipid specificity was incorporated into the mechanisms that generate cell architecture. From its epithelial origins, the raft concept was generalized to explain how cells manage to perform their full spectrum of membrane functions. The associative capability of saturated sphingolipids and phospholipids with cholesterol and their repulsion of polyunsaturated membrane lipids formed the basis of the raft concept. With the demonstration that isolated plasma membrane vesicles can separate into two phases by liquid–liquid demixing, this became the physicochemical principle underlying raft sub-compartmentalization. The compartmentalization achieved by clustering fluctuating raft assemblies in living cells could be called an abortive nonequilibrium phase separation. Moreover, recent data demonstrate that raft lipids and proteins form collective cooperatives with emerging properties that enrich their functional repertoire. Together these features provide a new perspective on cell membrane function.

Keywords

Lipid rafts Membrane domains Phase separation Liquid–liquid demixing Epithelial surface polarity Cholesterol 

Notes

Acknowledgements

Thanks to Mathias Gerl for help with references and figures.

References

  1. 1.
    Simons K, Garoff H, Helenius A (1982) How an animal virus gets into and out of its host cell. Sci Am 246(2):58–66CrossRefGoogle Scholar
  2. 2.
    Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77(3):853–880CrossRefGoogle Scholar
  3. 3.
    Rodriguez Boulan E, Sabatini DD (1978) Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc Natl Acad Sci USA 75(10):5071–5075CrossRefGoogle Scholar
  4. 4.
    Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27(17):6197–6202CrossRefGoogle Scholar
  5. 5.
    Fries E, Rothman JE (1980) Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc Natl Acad Sci USA 77(7):3870–3874CrossRefGoogle Scholar
  6. 6.
    Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215CrossRefGoogle Scholar
  7. 7.
    Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234(4775):438–443CrossRefGoogle Scholar
  8. 8.
    Matlin KS, Simons K (1984) Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells. J Cell Biol 99(6):2131–2139CrossRefGoogle Scholar
  9. 9.
    Pfeiffer S, Fuller SD, Simons K (1985) Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin-Darby canine kidney cells. J Cell Biol 101(2):470–476CrossRefGoogle Scholar
  10. 10.
    van Meer G, Stelzer EH, Wijnaendts-van-Resandt RW, Simons K (1987) Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol 105(4):1623–1635CrossRefGoogle Scholar
  11. 11.
    Thompson TE, Tillack TW (1985) Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem 14:361–386CrossRefGoogle Scholar
  12. 12.
    Skibbens JE, Roth MG, Matlin KS (1989) Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and nonpolar fibroblasts. J Cell Biol 108(3):821–832CrossRefGoogle Scholar
  13. 13.
    Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68(3):533–544CrossRefGoogle Scholar
  14. 14.
    Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141(4):929–942CrossRefGoogle Scholar
  15. 15.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572CrossRefGoogle Scholar
  16. 16.
    de Almeida RF, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85(4):2406–2416CrossRefGoogle Scholar
  17. 17.
    Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905(1):162–172CrossRefGoogle Scholar
  18. 18.
    Silvius JR (1992) Cholesterol modulation of lipid intermixing in phospholipid and glycosphingolipid mixtures. Evaluation using fluorescent lipid probes and brominated lipid quenchers. Biochemistry 31(13):3398–3408CrossRefGoogle Scholar
  19. 19.
    Wang C, Yu Y, Regen SL (2017) Lipid raft formation: key role of polyunsaturated phospholipids. Angew Chem Int Ed Engl 56(6):1639–1642CrossRefGoogle Scholar
  20. 20.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39CrossRefGoogle Scholar
  21. 21.
    Kurzchalia TV, Hartmann E, Dupree P (1995) Guilty by insolubility—does a protein’s detergent insolubility reflect a caveolar location. Trends Cell Biol 5(5):187–189CrossRefGoogle Scholar
  22. 22.
    Munro S (2003) Lipid rafts: elusive or illusive? Cell 115(4):377–388CrossRefGoogle Scholar
  23. 23.
    Levental I, Veatch SL (2016) The continuing mystery of lipid rafts. J Mol Biol 428(24 Pt A):4749–4764CrossRefGoogle Scholar
  24. 24.
    Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394(6695):798–801CrossRefGoogle Scholar
  25. 25.
    Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M, Johnson C, Suryawanshi S, Saikam V, Sawant SD, Panda A, Guo Z, Vishwakarma RA, Rao M, Mayor S (2015) Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161(3):581–594CrossRefGoogle Scholar
  26. 26.
    Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5(4):213–230CrossRefGoogle Scholar
  27. 27.
    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157(6):1071–1081CrossRefGoogle Scholar
  28. 28.
    Pralle A, Keller P, Florin EL, Simons K, Horber JK (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148(5):997–1008CrossRefGoogle Scholar
  29. 29.
    Lenne P, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo X, Rigneault H, He H, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25(14):3245–3256CrossRefGoogle Scholar
  30. 30.
    Klotzsch E, Schutz GJ (2013) A critical survey of methods to detect plasma membrane rafts. Philos Trans R Soc Lond Ser B Biol Sci 368(1611):20120033CrossRefGoogle Scholar
  31. 31.
    Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA, Webb WW (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci USA 104(9):3165–3170CrossRefGoogle Scholar
  32. 32.
    Lingwood D, Ries J, Schwille P, Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci USA 105(29):10005–10010CrossRefGoogle Scholar
  33. 33.
    Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Baird B (2008) Critical fluctuations in plasma membrane vesicles. ACS Chem Biol 3(5):287–293CrossRefGoogle Scholar
  34. 34.
    Kaiser HJ, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci USA 106(39):16645–16650CrossRefGoogle Scholar
  35. 35.
    Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara TK (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36(11):604–615CrossRefGoogle Scholar
  36. 36.
    Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699CrossRefGoogle Scholar
  37. 37.
    Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S (2009) Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10(6):691–712CrossRefGoogle Scholar
  38. 38.
    van Zanten TS, Gomez J, Manzo C, Cambi A, Buceta J, Reigada R, Garcia-Parajo MF (2010) Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc Natl Acad Sci USA 107(35):15437–15442CrossRefGoogle Scholar
  39. 39.
    Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103(50):18992–18997CrossRefGoogle Scholar
  40. 40.
    Ayuyan AG, Cohen FS (2006) Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys J 91(6):2172–2183CrossRefGoogle Scholar
  41. 41.
    Sevcsik E, Brameshuber M, Folser M, Weghuber J, Honigmann A, Schutz GJ (2015) GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun 6:6969CrossRefGoogle Scholar
  42. 42.
    Huang H, Simsek MF, Jin W, Pralle A (2015) Effect of receptor dimerization on membrane lipid raft structure continuously quantified on single cells by camera based fluorescence correlation spectroscopy. PLoS One 10(3):e0121777CrossRefGoogle Scholar
  43. 43.
    Levental I, Lingwood D, Grzybek M, Coskun U, Simons K (2010) Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci USA 107(51):22050–22054CrossRefGoogle Scholar
  44. 44.
    Ewers H, Romer W, Smith A, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12(1):11–18CrossRefGoogle Scholar
  45. 45.
    Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35(3):125–129CrossRefGoogle Scholar
  46. 46.
    Stone MB, Shelby SA, Nunez MF, Wisser K, Veatch SL (2017) Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6:e19891CrossRefGoogle Scholar
  47. 47.
    Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, Sampaio JL, de Robillard Q, Ferguson C, Proszynski TJ, Shevchenko A, Simons K (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185(4):601–612CrossRefGoogle Scholar
  48. 48.
    Proszynski TJ, Klemm RW, Gravert M, Hsu PP, Gloor Y, Wagner J, Kozak K, Grabner H, Walzer K, Bagnat M, Simons K, Walch-Solimena C (2005) A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc Natl Acad Sci USA 102(50):17981–17986CrossRefGoogle Scholar
  49. 49.
    Saenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O, Broda M, Simons K (2015) Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci USA 112(38):11971–11976CrossRefGoogle Scholar
  50. 50.
    Kurzchalia TV, Ward S (2003) Why do worms need cholesterol? Nat Cell Biol 5(8):684–688CrossRefGoogle Scholar
  51. 51.
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732CrossRefGoogle Scholar
  52. 52.
    Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483(7389):336–340CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Max-Planck-Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations