Advertisement

Membranes by the Numbers

  • Rob Phillips
Chapter

Abstract

Many of the most important processes in cells take place on and across membranes. With the rise of an impressive array of powerful quantitative methods for characterizing these membranes, it is an opportune time to reflect on the structure and function of membranes from the point of view of biological numeracy. To that end, in this chapter, I review the quantitative parameters that characterize the mechanical, electrical, and transport properties of membranes and carry out a number of corresponding order-of-magnitude estimates that help us understand the values of those parameters.

Keywords

Membrane properties Fermi problems Biological numeracy Membrane shape 

Notes

Acknowledgements

One of the best parts of being a member of the scientific enterprise is all the smart and interesting people we get to interact with. In preparing this chapter I sent out a survey to many experts in membrane biology and biophysics and was overwhelmed with the thoughtful responses that I received from many colleagues. I am grateful to Olaf Andersen, Patricia Bassereau, Joel Dacks, Markus Deserno, Evan Evans, Ben Freund, Jay Groves, Christoph Haselwandter, Liz Haswell, KC Huang, Ron Kaback, Heun Jin Lee, Mike Lynch, Bill Klug, Jane Kondev, Ron Milo, Uri Moran, John Nagle, Phil Nelson, Bert Poolman, Tom Powers, Doug Rees, James Saenz, Pierre Sens, Victor Sourjik, Stephanie Tristram-Nagle, and Tristan Ursell for useful discussions. I am especially grateful to Olaf Andersen, Markus Deserno, Christoph Haselwandter, James Saenz, Pierre Sens, and Tristan Ursell who have been patient and persistent in advancing my membrane education, though obviously all shortcomings in this chapter are due to my failure to absorb that education and are no fault of their own. I am privileged to be entrusted by the National Science Foundation, the National Institutes of Health, The California Institute of Technology and La Fondation Pierre Gilles de Gennes with the funds that make the kind of work described here possible. Specifically I am grateful to the NIH for support through award numbers DP1 OD000217 (Director’s Pioneer Award), R01 GM085286, and 1R35 GM118043-01 (MIRA). I am also grateful to the Kavli Institute for Theoretical Physics where much of this chapter was written. More generally, this article is part of an adventure that I have undertaken with Ron Milo and Nigel Orme (our illustrator) and generously funded by the Donna and Benjamin Rosen Bioengineering Center at Caltech. Finally and sadly, since the completion of this chapter, my friend and collaborator Bill Klug was brutally murdered in his office by a former graduate student. I had asked Bill to join me in the writing of this chapter, but he was too busy during this summer and instead of having the happy presence of his name as a co-author I instead have the solemn and unhappy duty to dedicate this short piece to him, kind and intellectually deep, above all a family man, he will be deeply missed.

References

  1. 1.
    Buehler LK (2016) Cell membranes. Garland Press, New YorkGoogle Scholar
  2. 2.
    Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mahajan S (2014) The art of insight in science and engineering: mastering complexity. The MIT Press, CambridgeGoogle Scholar
  4. 4.
    Phillips R, Kondev J, Theriot J, Garcia HG (2013) Physical biology of the cell, 2nd edn. Garland Science, New York. Illustrated by N. OrmeGoogle Scholar
  5. 5.
    Tanford C (2004) Ben Franklin stilled the waves. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    Pockels A (1891) Surface tension. Nature 43:437–439Google Scholar
  7. 7.
    Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II. Liquids. J Am Chem Soc 39:1848–1906CrossRefGoogle Scholar
  8. 8.
    Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41:439–443PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Nagle JF, Zeidel ML, Mathai JC, Tristram-Nagle S (2008) Structural determinants of water permeability through the lipid membrane. J Gen Physiol 131:69–76PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Boal D (2002) Mechanics of the cell, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Harroun TA, Weiss TM, Yang L, Huang HW (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76(6):3176–3185PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nielsen C, Andersen OS (2000) Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys J 79(5):2583–2604PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459(7245):379–385PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Neupert W (2012) SnapShot: mitochondrial architecture. Cell 149(3):722–722.e1PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126(3): 435–439PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143(5):774–788PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Milo R, Phillips R (2016) Cell biology by the numbers. Garland Press, New YorkGoogle Scholar
  20. 20.
    Dupuy AD, Engelman DM (2008) Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci U S A 105(8):2848–2852PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kalvodova L, Sampaio JL, Cordo S, Ejsing CS, Shevchenko A, Simons K (2009) The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J Virol 83(16):7996–8003PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sampaio JL, Gerl MJ, Klose C, Ejsing CS, Beug H, Simons K, Shevchenko A (2011) Membrane lipidome of an epithelial cell line. Proc Natl Acad Sci U S A 108(5):1903–1907PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Layre E, Sweet L, Hong S, Madigan CA, Desjardins D, Young DC, Cheng TY, Armand JW, Kim K, Shamputa IC, McConnell MJ, Debono CA, Behar SM, Minnaard AJ, Murray M, Barry CE, Matsunaga I, Moody DB (2011) A comparative lipidomics platform for chemotaxonomic analysis of mycobacterium tuberculosis. Chem Biol 18:1537–1549PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Carvalho M, Sampaio JL, Palm W, Brankatschk M, Eaton S, Shevchenko A (2012) Effects of diet and development on the Drosophila lipidome. Mol Syst Biol 8:600PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K (2012) Flexibility of a eukaryotic lipidome–insights from yeast lipidomics. PLoS One 7(4):e35063PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Klose C, Surma MA, Simons K (2013) Organellar lipidomics–background and perspectives. Curr Opin Cell Biol 25(4):406–413PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, SunderlandGoogle Scholar
  30. 30.
    Levental KR, Levental I (2015) Giant plasma membrane vesicles: models for understanding membrane organization. Curr Top Membr 75:25–57PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Evans E, Rawicz W, Smith BA (2013) Back to the future: mechanics and thermodynamics of lipid biomembranes. Faraday Discuss 161:591–611PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nagle JF, Jablin MS, Tristram-Nagle S, Akabori A (2015) What are the true values of the bending modulus of simple lipid bilayers? Chem Phys Lipids 185:3–10PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Song J, Waugh RE (1993) Bending rigidity of SOPC membranes containing cholesterol. Biophys J 64:1967–1970PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hochmuth FM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70(1):358–369PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18(17):6681–6692PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Olbrich KC, Rawicz W, Needham D, Evans E (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys J 79:321–327PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Upadhyaya A, Sheetz MP (2004) Tension in tubulovesicular networks of Golgi and endoplasmic reticulum membranes. Biophys J 86(5):2923–2928PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Peukes J, Betz T (2014) Direct measurement of the cortical tension during the growth of membrane blebs. Biophys J 107(8):1810–1820PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sens P, Plastino J (2015) Membrane tension and cytoskeleton organization in cell motility. J Phys Condens Matter 27(27):273103PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Manning GS (1968) Binary diffusion and bulk flow through a potential-energy profile: a kinetic basis for the thermodynamic equations of flow through membranes. J Chem Phys 49: 2668–2675CrossRefGoogle Scholar
  43. 43.
    Robinett RW (2015) Dimensional analysis as the other language of physics. Am J Phys 83: 353–361CrossRefGoogle Scholar
  44. 44.
    Finkelstein A (1976) Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol 68(2):127–135PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Stein WD (1990) Channels, carriers and pumps. An introduction to membrane transport. Academic, CambridgeGoogle Scholar
  46. 46.
    Schlessinger J, Axelrod D, Koppel DE, Webb WW, Elson EL (1977) Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science 195(4275):307–309PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Alecio MR, Golan DE, Veatch WR, Rando RR (1982) Use of a fluorescent cholesterol derivative to measure lateral mobility of cholesterol in membranes. Proc Natl Acad Sci U S A 79(17):5171–5174PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gaede HC, Gawrisch K (2003) Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome. Biophys J 85(3):1734–1740PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Doeven MK, Folgering JH, Krasnikov V, Geertsma ER, van den Bogaart G, Poolman B (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88(2):1134–1142PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Nenninger A, Mastroianni G, Robson A, Lenn T, Xue Q, Leake MC, Mullineaux CW (2014) Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli. Mol Microbiol 92(5):1142–1153PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fahey PF, Koppel DE, Barak LS, Wolf DE, Elson EL, Webb WW (1977) Lateral diffusion in planar lipid bilayers. Science 195(4275):305–306PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci U S A 72(8):3111–3113PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci U S A 103(7):2098–2102PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B (2009) Lateral diffusion of membrane proteins. J Am Chem Soc 131(35):12650–12656CrossRefGoogle Scholar
  55. 55.
    Kumar M, Mommer MS, Sourjik V (2010) Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. Biophys J 98(4):552–559PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chow D, Guo L, Gai F, Goulian M (2012) Fluorescence correlation spectroscopy measurements of the membrane protein TetA in Escherichia coli suggest rapid diffusion at short length scales. PLoS One 7(10):e48600PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Mika JT, Schavemaker PE, Krasnikov V, Poolman B (2014) Impact of osmotic stress on protein diffusion in Lactococcus lactis. Mol Microbiol 94(4):857–870PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hanai T, Haydon DA, Taylor J (1965) The variation of capacitance and conductance of bimolecular lipid membranes with area. J Theor Biol 9:433–443PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Vorobyov I, Olson TE, Kim JH, Koeppe RE 2nd, Andersen OS, Allen TW (2014) Ion-induced defect permeation of lipid membranes. Biophys J 106(3):586–597PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19(10):1356–1369PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fricke H (1925) The electric capacity of suspensions with special reference to blood. J Gen Physiol 9:137–152PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Curtis HJ, Cole KS (1938) Transverse electric impedance of the squid giant axon. J Gen Physiol 21:757–765PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Almers W (1978) Gating currents and charge movements in excitable membranes. Rev Physiol Biochem Pharmacol 82:97–190Google Scholar
  64. 64.
    Fagerberg L, Jonasson K, von Heijne G, Uhlen M, Berglund L (2010) Prediction of the human membrane proteome. Proteomics 10(6):1141–1149PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Li GW, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157(3):624–635PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schmidt A, Kochanowski K, Vedelaar S, Ahrne E, Volkmer B, Callipo L, Knoops K, Bauer M, Aebersold R, Heinemann M (2016) The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol 34(1):104–110PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Li M, Hazelbauer GL (2004) Cellular stoichiometry of the components of the chemotaxis signaling complex. J Bacteriol 186(12):3687–3694PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bitbol AF, Wingreen NS (2015) Fundamental constraints on the abundances of chemotaxis proteins. Biophys J 108(5):1293–1305PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bialecka-Fornal M, Lee HJ, Phillips R (2015) The rate of osmotic downshock determines the survival probability of bacterial mechanosensitive channel mutants. J Bacteriol 197(1): 231–237PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Louhivuori M, Jelger Risselada H, van der Giessen E, Marrink SJ (2010) Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci U S A 107: 19856–19860PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Andersen OS (1983) Ion movement through gramicidin a channels single-channel measurements at very high potentials. Biophys J 41:119–133PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R (2005) Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15(2):116–124PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Garcia HG, Sanchez A, Kuhlman T, Kondev J, Phillips R (2010) Transcription by the numbers redux: experiments and calculations that surprise. Trends Cell Biol 20:723–733PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Phillips R, Milo R (2009) A feeling for the numbers in biology. Proc Natl Acad Sci U S A 106(51):21465–21471PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Moran U, Phillips R, Milo R (2010) SnapShot: key numbers in biology. Cell 141(7): 1262–1262.e1PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Flamholz A, Phillips R, Milo R (2014) The quantified cell. Mol Biol Cell 25(22):3497–3500PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shamir M, Bar-On Y, Phillips R, Milo R (2016) SnapShot: timescales in cell biology. Cell 164(6):1302–1302.e1PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Phillips R (2015) Theory in biology: Figure 1 or Figure 7? Trends Cell Biol 25(12):723–729PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bialek W (2015) Perspectives on theory at the interface of physics and biology. ArXiv: 1512.08954Google Scholar
  80. 80.
    Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13CrossRefGoogle Scholar
  81. 81.
    Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H, Mahadevan L, Tabin CJ (2011) On the growth and form of the gut. Nature 476(7358):57–62PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Shyer AE, Tallinen T, Nerurkar NL, Wei Z, Gil ES, Kaplan DL, Tabin CJ, Mahadevan L (2013) Villification: how the gut gets its villi. Science 342(6155):212–218PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Dacks JB, Peden AA, Field MC (2009) Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 41(2):330–340PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Field MC, Dacks JB (2009) First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol 21(1):4–13PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Richardson E, Zerr K, Tsaousis A, Dorrell RG, Dacks JB (2015) Evolutionary cell biology: functional insight from “endless forms most beautiful”. Mol Biol Cell 26:4532–4538PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Applied Physics and Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations