Advertisement

Spatial and Mechanical Aspects of Signal Transduction in the Cell Membrane

  • Kabir H. BiswasEmail author
  • Jay T. Groves
Chapter

Abstract

Intercellular cognate receptor-ligand pairs are major players in cellular signal transduction. The fact that both the receptor and the ligand are present on the membrane in these juxtacrine signaling interactions presents distinct experimental difficulties in their study. One experimental platform that has proven particularly useful is the hybrid live cell-supported lipid bilayer system, wherein a live cell is allowed to interact with a synthetic supported membrane displaying ligands of interest. A synthetic membrane enables control over identity, density, mobility, and spatial patterning of the displayed ligands. This chapter provides insights gained from the reconstitution of the immunological synapse formed by T-cells, junction formed by ephrinA1-EphA2 receptor tyrosine kinase in breast cancer cells, and adhesion formed by E-cadherin in epithelial cells on synthetic supported lipid bilayers.

Keywords

α-Catenin Cell signaling Cadherin Ephrin Eph receptor Immunological synapse Mechanical signaling Peptide-major histocompatibility complex Receptor-ligand clustering Supported lipid bilayer T-cell receptor 

References

  1. 1.
    Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (2001) The immunological synapse. Annu Rev Immunol 19:375–396.  https://doi.org/10.1146/annurev.immunol.19.1.375 CrossRefPubMedGoogle Scholar
  2. 2.
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227.  https://doi.org/10.1126/science.285.5425.221 CrossRefPubMedGoogle Scholar
  3. 3.
    Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310(5751):1191–1193.  https://doi.org/10.1126/science.1119238 CrossRefPubMedGoogle Scholar
  4. 4.
    Klein R (2012) Eph/ephrin signalling during development. Development 139(22):4105–4109.  https://doi.org/10.1242/dev.074997 CrossRefPubMedGoogle Scholar
  5. 5.
    Murai KK, Pasquale EB (2003) `Eph'ective signaling: forward, reverse and crosstalk. J Cell Sci 116(Pt 14):2823–2832.  https://doi.org/10.1242/jcs.00625 CrossRefPubMedGoogle Scholar
  6. 6.
    Leckband DE, de Rooij J (2014) Cadherin adhesion and mechanotransduction. Annu Rev Cell Dev Biol 30:291–315.  https://doi.org/10.1146/annurev-cellbio-100913-013212 CrossRefPubMedGoogle Scholar
  7. 7.
    Patel SD, Chen CP, Bahna F, Honig B, Shapiro L (2003) Cadherin-mediated cell-cell adhesion: sticking together as a family. Curr Opin Struct Biol 13(6):690–698CrossRefGoogle Scholar
  8. 8.
    Wheelock MJ, Johnson KR (2003) Cadherin-mediated cellular signaling. Curr Opin Cell Biol 15(5):509–514.  https://doi.org/10.1016/S0955-0674(03)00101-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776CrossRefGoogle Scholar
  10. 10.
    Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4(10).  https://doi.org/10.1101/cshperspect.a011213 CrossRefGoogle Scholar
  11. 11.
    Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271(5245):43–48.  https://doi.org/10.1126/science.271.5245.43 CrossRefPubMedGoogle Scholar
  12. 12.
    Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437(7059):656–663.  https://doi.org/10.1038/nature04164 CrossRefPubMedGoogle Scholar
  13. 13.
    Groves JT, Boxer SG (1995) Electric field-induced concentration gradients in planar supported bilayers. Biophys J 69(5):1972–1975.  https://doi.org/10.1016/S0006-3495(95)80067-6 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Groves JT, Boxer SG (2002) Micropattern formation in supported lipid membranes. Acc Chem Res 35(3):149–157.  https://doi.org/10.1021/ar950039m CrossRefPubMedGoogle Scholar
  15. 15.
    Groves JT, Ulman N, Boxer SG (1997) Micropatterning fluid lipid bilayers on solid supports. Science 275(5300):651–653.  https://doi.org/10.1126/science.275.5300.651 CrossRefPubMedGoogle Scholar
  16. 16.
    Groves JT, Wulfing C, Boxer SG (1996) Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers. Biophys J 71(5):2716–2723.  https://doi.org/10.1016/S0006-3495(96)79462-6 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Caculitan NG, Kai H, Liu E, Fay N, Yu Y, Lohmuller T, O'Donoghue GP, Groves JT (2014) Size-based chromatography of signaling clusters in a living cell membrane. Nano Lett 14(5):2293–2298.  https://doi.org/10.1021/nl404514e CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    DeMond AL, Mossman KD, Starr T, Dustin ML, Groves JT (2008) T cell receptor microcluster transport through molecular mazes reveals mechanism of translocation. Biophys J 94(8):3286–3292.  https://doi.org/10.1529/biophysj.107.119099 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yu CH, Wu HJ, Kaizuka Y, Vale RD, Groves JT (2010) Altered actin centripetal retrograde flow in physically restricted immunological synapses. PLoS One 5(7):e11878.  https://doi.org/10.1371/journal.pone.0011878 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yu Y, Fay NC, Smoligovets AA, Wu HJ, Groves JT (2012) Myosin IIA modulates T cell receptor transport and CasL phosphorylation during early immunological synapse formation. PLoS One 7(2):e30704.  https://doi.org/10.1371/journal.pone.0030704 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ketchum C, Miller H, Song W, Upadhyaya A (2014) Ligand mobility regulates B cell receptor clustering and signaling activation. Biophys J 106(1):26–36.  https://doi.org/10.1016/j.bpj.2013.10.043 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu W, Won Sohn H, Tolar P, Meckel T, Pierce SK (2010) Antigen-induced oligomerization of the B cell receptor is an early target of fc gamma RIIB inhibition. J Immunol 184(4):1977–1989.  https://doi.org/10.4049/jimmunol.0902334 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Natkanski E, Lee WY, Mistry B, Casal A, Molloy JE, Tolar P (2013) B cells use mechanical energy to discriminate antigen affinities. Science 340(6140):1587–1590.  https://doi.org/10.1126/science.1237572 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Greene AC, Lord SJ, Tian A, Rhodes C, Kai H, Groves JT (2014) Spatial organization of EphA2 at the cell-cell interface modulates trans-endocytosis of ephrinA1. Biophys J 106(10):2196–2205.  https://doi.org/10.1016/j.bpj.2014.03.043 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lohmuller T, Xu Q, Groves JT (2013) Nanoscale obstacle arrays frustrate transport of EphA2-Ephrin-A1 clusters in cancer cell lines. Nano Lett 13(7):3059–3064.  https://doi.org/10.1021/nl400874v CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Salaita K, Nair PM, Petit RS, Neve RM, Das D, Gray JW, Groves JT (2010) Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327(5971):1380–1385.  https://doi.org/10.1126/science.1181729 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Baksh MM, Dean C, Pautot S, DeMaria S, Isacoff E, Groves JT (2005) Neuronal activation by GPI-linked neuroligin-1 displayed in synthetic lipid bilayer membranes. Langmuir 21(23):10693–10698.  https://doi.org/10.1021/la051243d CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pautot S, Lee H, Isacoff EY, Groves JT (2005) Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nat Chem Biol 1(5):283–289.  https://doi.org/10.1038/nchembio737 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yu CH, Law JB, Suryana M, Low HY, Sheetz MP (2011) Early integrin binding to Arg-Gly-asp peptide activates actin polymerization and contractile movement that stimulates outward translocation. Proc Natl Acad Sci USA 108(51):20585–20590.  https://doi.org/10.1073/pnas.1109485108 CrossRefPubMedGoogle Scholar
  30. 30.
    Yu CH, Rafiq NB, Cao F, Zhou Y, Krishnasamy A, Biswas KH, Ravasio A, Chen Z, Wang YH, Kawauchi K, Jones GE, Sheetz MP (2015) Integrin-beta3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nat Commun 6:8672.  https://doi.org/10.1038/ncomms9672 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yu CH, Rafiq NB, Krishnasamy A, Hartman KL, Jones GE, Bershadsky AD, Sheetz MP (2013) Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 5(5):1456–1468.  https://doi.org/10.1016/j.celrep.2013.10.040 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vafaei S, Tabaei SR, Biswas KH, Groves JT, Cho N-J (2017) Dynamic cellular interactions with extracellular matrix triggered by biomechanical tuning of low-rigidity, supported lipid membranes. Adv Healthc Mater 6(10):1700243–n/a.  https://doi.org/10.1002/adhm.201770049 CrossRefGoogle Scholar
  33. 33.
    Biswas KH, Hartman KL, Yu CH, Harrison OJ, Song H, Smith AW, Huang WY, Lin WC, Guo Z, Padmanabhan A, Troyanovsky SM, Dustin ML, Shapiro L, Honig B, Zaidel-Bar R, Groves JT (2015) E-cadherin junction formation involves an active kinetic nucleation process. Proc Natl Acad Sci USA 112(35):10932–10937.  https://doi.org/10.1073/pnas.1513775112 CrossRefPubMedGoogle Scholar
  34. 34.
    Biswas KH, Hartman KL, Zaidel-Bar R, Groves JT (2016) Sustained alpha-catenin activation at E-cadherin junctions in the absence of mechanical force. Biophys J 111(5):1044–1052.  https://doi.org/10.1016/j.bpj.2016.06.027 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, Chien Y (1998) Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 16:523–544.  https://doi.org/10.1146/annurev.immunol.16.1.523 CrossRefPubMedGoogle Scholar
  36. 36.
    Wang W, Gulden PH, Pierce RA, Shabanowitz J, Man ST, Hunt DF, Engelhard VH (1997) A naturally processed peptide presented by HLA-A*0201 is expressed at low abundance and recognized by an alloreactive CD8+ cytotoxic T cell with apparent high affinity. J Immunol 158(12):5797–5804PubMedGoogle Scholar
  37. 37.
    Brian AA, McConnell HM (1984) Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci USA 81(19):6159–6163.  https://doi.org/10.1073/pnas.81.19.6159 CrossRefPubMedGoogle Scholar
  38. 38.
    Salafsky J, Groves JT, Boxer SG (1996) Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry 35(47):14773–14781.  https://doi.org/10.1021/bi961432i CrossRefPubMedGoogle Scholar
  39. 39.
    Hartman NC, Nye JA, Groves JT (2009) Cluster size regulates protein sorting in the immunological synapse. Proc Natl Acad Sci USA 106(31):12729–12734.  https://doi.org/10.1073/pnas.0902621106 CrossRefPubMedGoogle Scholar
  40. 40.
    Manz BN, Jackson BL, Petit RS, Dustin ML, Groves J (2011) T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc Natl Acad Sci USA 108(22):9089–9094.  https://doi.org/10.1073/pnas.1018771108 CrossRefPubMedGoogle Scholar
  41. 41.
    Yu CH, Groves JT (2010) Engineering supported membranes for cell biology. Med Biol Eng Comput 48(10):955–963.  https://doi.org/10.1007/s11517-010-0634-x CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Groves JT (2006) Spatial mutation of the T cell immunological synapse. Curr Opin Chem Biol 10(6):544–550.  https://doi.org/10.1016/j.cbpa.2006.10.021 CrossRefPubMedGoogle Scholar
  43. 43.
    Hsu CJ, Hsieh WT, Waldman A, Clarke F, Huseby ES, Burkhardt JK, Baumgart T (2012) Ligand mobility modulates immunological synapse formation and T cell activation. PLoS One 7(2):e32398.  https://doi.org/10.1371/journal.pone.0032398 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, Kam LC, Stokes DL, Dustin ML (2014) Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507(7490):118–123.  https://doi.org/10.1038/nature12951 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Caplan S, Zeliger S, Wang L, Baniyash M (1995) Cell-surface-expressed T-cell antigen-receptor zeta chain is associated with the cytoskeleton. Proc Natl Acad Sci USA 92(11):4768–4772.  https://doi.org/10.1073/pnas.1512331113 CrossRefPubMedGoogle Scholar
  46. 46.
    Wulfing C, Davis MM (1998) A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282(5397):2266–2269.  https://doi.org/10.1126/science.282.5397.2266 CrossRefPubMedGoogle Scholar
  47. 47.
    Smoligovets AA, Smith AW, Wu HJ, Petit RS, Groves JT (2012) Characterization of dynamic actin associations with T-cell receptor microclusters in primary T cells. J Cell Sci 125(Pt 3):735–742.  https://doi.org/10.1242/jcs.092825 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA (2005) T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436(7050):578–582.  https://doi.org/10.1038/nature03843 CrossRefPubMedGoogle Scholar
  49. 49.
    Cordoba SP, Choudhuri K, Zhang H, Bridge M, Basat AB, Dustin ML, van der Merwe PA (2013) The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121(21):4295–4302.  https://doi.org/10.1182/blood-2012-07-442251 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    James JR, Vale RD (2012) Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487(7405):64–69.  https://doi.org/10.1038/nature11220 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lim HS, Cordoba SP, Dushek O, Goyette J, Taylor A, Rudd CE, van der Merwe PA (2015) Costimulation of IL-2 production through CD28 is dependent on the size of its ligand. J Immunol 195(11):5432–5439.  https://doi.org/10.4049/jimmunol.1500707 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Milstein O, Tseng SY, Starr T, Llodra J, Nans A, Liu M, Wild MK, van der Merwe PA, Stokes DL, Reisner Y, Dustin ML (2008) Nanoscale increases in CD2-CD48-mediated intermembrane spacing decrease adhesion and reorganize the immunological synapse. J Biol Chem 283(49):34414–34422.  https://doi.org/10.1074/jbc.M804756200 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    O'Donoghue GP, Pielak RM, Smoligovets AA, Lin JJ, Groves JT (2013) Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife 2:e00778.  https://doi.org/10.7554/eLife.00778 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Corse E, Gottschalk RA, Krogsgaard M, Allison JP (2010) Attenuated T cell responses to a high-potency ligand in vivo. PLoS Biol 8(9).  https://doi.org/10.1371/journal.pbio.1000481 CrossRefGoogle Scholar
  55. 55.
    Newell EW, Ely LK, Kruse AC, Reay PA, Rodriguez SN, Lin AE, Kuhns MS, Garcia KC, Davis MM (2011) Structural basis of specificity and cross-reactivity in T cell receptors specific for cytochrome c-I-E(k). J Immunol 186(10):5823–5832.  https://doi.org/10.4049/jimmunol.1100197 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW, Brameshuber M, Klein LO, Schutz GJ, Davis MM (2010) TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463(7283):963–967.  https://doi.org/10.1038/nature08746 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Mosch B, Reissenweber B, Neuber C, Pietzsch J (2010) Eph receptors and ephrin ligands: important players in angiogenesis and tumor angiogenesis. J Oncol 2010:135285.  https://doi.org/10.1155/2010/135285 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Miura K, Nam JM, Kojima C, Mochizuki N, Sabe H (2009) EphA2 engages Git1 to suppress Arf6 activity modulating epithelial cell-cell contacts. Mol Biol Cell 20(7):1949–1959.  https://doi.org/10.1091/mbc.E08-06-0549 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bashaw GJ, Klein R (2010) Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 2(5):a001941.  https://doi.org/10.1101/cshperspect.a001941 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fang WB, Ireton RC, Zhuang G, Takahashi T, Reynolds A, Chen J (2008) Overexpression of EPHA2 receptor destabilizes adherens junctions via a RhoA-dependent mechanism. J Cell Sci 121(Pt 3):358–368.  https://doi.org/10.1242/jcs.017145 CrossRefPubMedGoogle Scholar
  61. 61.
    Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52.  https://doi.org/10.1016/j.cell.2008.03.011 CrossRefPubMedGoogle Scholar
  62. 62.
    Salaita K, Groves JT (2010) Roles of the cytoskeleton in regulating EphA2 signals. Commun Integr Biol 3(5):454–457.  https://doi.org/10.4161/cib.3.5.12418 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY (2010) An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol 17(4):398–402.  https://doi.org/10.1038/nsmb.1782 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M, Nikolov DB, Dhe-Paganon S (2010) Architecture of Eph receptor clusters. Proc Natl Acad Sci USA 107(24):10860–10865.  https://doi.org/10.1073/pnas.1004148107 CrossRefPubMedGoogle Scholar
  65. 65.
    Seiradake E, Schaupp A, del Toro Ruiz D, Kaufmann R, Mitakidis N, Harlos K, Aricescu AR, Klein R, Jones EY (2013) Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat Struct Mol Biol 20(8):958–964.  https://doi.org/10.1038/nsmb.2617 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266(5186):816–819.  https://doi.org/10.1126/science.7973638 CrossRefGoogle Scholar
  67. 67.
    Atapattu L, Saha N, Llerena C, Vail ME, Scott AM, Nikolov DB, Lackmann M, Janes PW (2012) Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J Cell Sci 125(Pt 24):6084–6093.  https://doi.org/10.1242/jcs.112631 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB (2005) Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123(2):291–304.  https://doi.org/10.1016/j.cell.2005.08.014 CrossRefPubMedGoogle Scholar
  69. 69.
    Lohmuller T, Triffo S, O'Donoghue GP, Xu Q, Coyle MP, Groves JT (2011) Supported membranes embedded with fixed arrays of gold nanoparticles. Nano Lett 11(11):4912–4918.  https://doi.org/10.1021/nl202847t CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Schmid EM, Bakalar MH, Choudhuri K, Weichsel J, Ann H, Geissler PL, Dustin ML, Fletcher DA (2016) Size-dependent protein segregation at membrane interfaces. Nat Phys 12(7):704–711.  https://doi.org/10.1038/nphys3678 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Biswas KH, Groves JT (2016) A microbead supported membrane-based fluorescence imaging assay reveals intermembrane receptor-ligand complex dimension with nanometer precision. Langmuir 32(26):6775–6780.  https://doi.org/10.1021/acs.langmuir.6b01377 CrossRefPubMedGoogle Scholar
  72. 72.
    Dutta D, Williamson CD, Cole NB, Donaldson JG (2012) Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS One 7(9):e45799.  https://doi.org/10.1371/journal.pone.0045799 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    von Kleist L, Stahlschmidt W, Bulut H, Gromova K, Puchkov D, Robertson MJ, MacGregor KA, Tomilin N, Pechstein A, Chau N, Chircop M, Sakoff J, von Kries JP, Saenger W, Krausslich HG, Shupliakov O, Robinson PJ, McCluskey A, Haucke V (2011) Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 146(3):471–484.  https://doi.org/10.1016/j.cell.2011.06.025 CrossRefGoogle Scholar
  74. 74.
    Fridman JS, Caulder E, Hansbury M, Liu X, Yang G, Wang Q, Lo Y, Zhou BB, Pan M, Thomas SM, Grandis JR, Zhuo J, Yao W, Newton RC, Friedman SM, Scherle PA, Vaddi K (2007) Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin Cancer Res 13(6):1892–1902.  https://doi.org/10.1158/1078-0432.CCR-06-2116 CrossRefPubMedGoogle Scholar
  75. 75.
    Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E, Lo Y, Baribaud F, Mikami I, Reguart N, Yang G, Li Y, Yao W, Vaddi K, Gazdar AF, Friedman SM, Jablons DM, Newton RC, Fridman JS, Minna JD, Scherle PA (2006) Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10(1):39–50.  https://doi.org/10.1016/j.ccr.2006.05.024 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Brasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22(6):299–310.  https://doi.org/10.1016/j.tcb.2012.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hiroki O (2012) Evolution of the cadherin-catenin complex. Subcell Biochem 60:9–35.  https://doi.org/10.1007/978-94-007-4186-7_2 CrossRefPubMedGoogle Scholar
  78. 78.
    Biswas KH, Zaidel-Bar R (2017) Early events in the assembly of E-cadherin adhesions. Exp Cell Res 358(1):14–19.  https://doi.org/10.1016/j.yexcr.2017.02.037 CrossRefPubMedGoogle Scholar
  79. 79.
    Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, Brasch J, Wu Y, Vendome J, Felsovalyi K, Hampton CM, Troyanovsky RB, Ben-Shaul A, Frank J, Troyanovsky SM, Shapiro L, Honig B (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19(2):244–256.  https://doi.org/10.1016/j.str.2010.11.016 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA 91(17):8263–8267.  https://doi.org/10.1073/pnas.91.17.8263 CrossRefPubMedGoogle Scholar
  81. 81.
    Riethmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci USA 92(3):855–859.  https://doi.org/10.1073/pnas.92.3.855 CrossRefPubMedGoogle Scholar
  82. 82.
    Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve AE (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392(6674):402–405.  https://doi.org/10.1038/32918 CrossRefPubMedGoogle Scholar
  83. 83.
    Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68(10):3645–3654.  https://doi.org/10.1158/0008-5472.CAN-07-2938 CrossRefPubMedGoogle Scholar
  84. 84.
    van Roy F (2014) Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer 14(2):121–134.  https://doi.org/10.1038/nrc3647 CrossRefPubMedGoogle Scholar
  85. 85.
    Vasioukhin V (2012) Adherens junctions and cancer. Subcell Biochem 60:379–414.  https://doi.org/10.1007/978-94-007-4186-7_16 CrossRefPubMedGoogle Scholar
  86. 86.
    Ciatto C, Bahna F, Zampieri N, VanSteenhouse HC, Katsamba PS, Ahlsen G, Harrison OJ, Brasch J, Jin X, Posy S, Vendome J, Ranscht B, Jessell TM, Honig B, Shapiro L (2010) T-cadherin structures reveal a novel adhesive binding mechanism. Nat Struct Mol Biol 17(3):339–347.  https://doi.org/10.1038/nsmb.1781 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Harrison OJ, Bahna F, Katsamba PS, Jin X, Brasch J, Vendome J, Ahlsen G, Carroll KJ, Price SR, Honig B, Shapiro L (2010) Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 17(3):348–357.  https://doi.org/10.1038/nsmb.1784 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Haussinger D, Ahrens T, Aberle T, Engel J, Stetefeld J, Grzesiek S (2004) Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J 23(8):1699–1708.  https://doi.org/10.1038/sj.emboj.7600192 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Katsamba P, Carroll K, Ahlsen G, Bahna F, Vendome J, Posy S, Rajebhosale M, Price S, Jessell TM, Ben-Shaul A, Shapiro L, Honig BH (2009) Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc Natl Acad Sci USA 106(28):11594–11599.  https://doi.org/10.1073/pnas.0905349106 CrossRefPubMedGoogle Scholar
  90. 90.
    Koch AW, Pokutta S, Lustig A, Engel J (1997) Calcium binding and homoassociation of E-cadherin domains. Biochemistry 36(25):7697–7705.  https://doi.org/10.1021/bi9705624 CrossRefPubMedGoogle Scholar
  91. 91.
    Li Y, Altorelli NL, Bahna F, Honig B, Shapiro L, Palmer AG 3rd (2013) Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion. Proc Natl Acad Sci USA 110(41):16462–16467.  https://doi.org/10.1073/pnas.1314303110 CrossRefPubMedGoogle Scholar
  92. 92.
    Bunse S, Garg S, Junek S, Vogel D, Ansari N, Stelzer EH, Schuman E (2013) Role of N-cadherin cis and trans interfaces in the dynamics of adherens junctions in living cells. PLoS One 8(12):e81517.  https://doi.org/10.1371/journal.pone.0081517 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wu Y, Jin X, Harrison O, Shapiro L, Honig BH, Ben-Shaul A (2010) Cooperativity between trans and cis interactions in cadherin-mediated junction formation. Proc Natl Acad Sci USA 107(41):17592–17597.  https://doi.org/10.1073/pnas.1011247107 CrossRefPubMedGoogle Scholar
  94. 94.
    Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475(7357):510–513.  https://doi.org/10.1038/nature10183 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Nagar B, Overduin M, Ikura M, Rini JM (1996) Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380(6572):360–364.  https://doi.org/10.1038/380360a0 CrossRefPubMedGoogle Scholar
  96. 96.
    Pertz O, Bozic D, Koch AW, Fauser C, Brancaccio A, Engel J (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J 18(7):1738–1747.  https://doi.org/10.1093/emboj/18.7.1738 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Sivasankar S, Zhang Y, Nelson WJ, Chu S (2009) Characterizing the initial encounter complex in cadherin adhesion. Structure 17(8):1075–1081.  https://doi.org/10.1016/j.str.2009.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Hong S, Troyanovsky RB, Troyanovsky SM (2011) Cadherin exits the junction by switching its adhesive bond. J Cell Biol 192(6):1073–1083.  https://doi.org/10.1083/jcb.201006113 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S (2012) Ideal, catch, and slip bonds in cadherin adhesion. Proc Natl Acad Sci USA 109(46):18815–18820.  https://doi.org/10.1073/pnas.1208349109 CrossRefPubMedGoogle Scholar
  100. 100.
    Bertocchi C, Wang Y, Ravasio A, Hara Y, Wu Y, Sailov T, Baird MA, Davidson MW, Zaidel-Bar R, Toyama Y, Ladoux B, Mege RM, Kanchanawong P (2017) Nanoscale architecture of cadherin-based cell adhesions. Nat Cell Biol 19(1):28–37.  https://doi.org/10.1038/ncb3456 CrossRefPubMedGoogle Scholar
  101. 101.
    Guo Z, Neilson LJ, Zhong H, Murray PS, Zanivan S, Zaidel-Bar R (2014) E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci Signal 7(354):rs7.  https://doi.org/10.1126/scisignal.2005473 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    McEwen AE, Escobar DE, Gottardi CJ (2012) Signaling from the adherens junction. Subcell Biochem 60:171–196.  https://doi.org/10.1007/978-94-007-4186-7_8 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Van Itallie CM, Tietgens AJ, Aponte A, Fredriksson K, Fanning AS, Gucek M, Anderson JM (2014) Biotin ligase tagging identifies proteins proximal to E-cadherin, including lipoma preferred partner, a regulator of epithelial cell-cell and cell-substrate adhesion. J Cell Sci 127(Pt 4):885–895.  https://doi.org/10.1242/jcs.140475 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Zaidel-Bar R (2013) Cadherin adhesome at a glance. J Cell Sci 126(Pt 2):373–378.  https://doi.org/10.1242/jcs.111559 CrossRefPubMedGoogle Scholar
  105. 105.
    Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) Alpha-catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12(6):533–542.  https://doi.org/10.1038/ncb2055 CrossRefPubMedGoogle Scholar
  106. 106.
    Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N, Weis WI, Nelson WJ, Dunn AR (2014) Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346(6209):1254211.  https://doi.org/10.1126/science.1254211 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Yao M, Qiu W, Liu R, Efremov AK, Cong P, Seddiki R, Payre M, Lim CT, Ladoux B, Mege RM, Yan J (2014) Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat Commun 5:4525.  https://doi.org/10.1038/ncomms5525 CrossRefPubMedGoogle Scholar
  108. 108.
    le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189(7):1107–1115.  https://doi.org/10.1083/jcb.201001149 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Twiss F, Le Duc Q, Van Der Horst S, Tabdili H, Van Der Krogt G, Wang N, Rehmann H, Huveneers S, Leckband DE, De Rooij J (2012) Vinculin-dependent cadherin mechanosensing regulates efficient epithelial barrier formation. Biol Open 1(11):1128–1140.  https://doi.org/10.1242/bio.20122428 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Perez TD, Nelson WJ, Boxer SG, Kam L (2005) E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. Langmuir 21(25):11963–11968.  https://doi.org/10.1021/la052264a CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Andreasson-Ochsner M, Romano G, Hakanson M, Smith ML, Leckband DE, Textor M, Reimhult E (2011) Single cell 3-D platform to study ligand mobility in cell-cell contact. Lab Chip 11(17):2876–2883.  https://doi.org/10.1039/c1lc20067d CrossRefPubMedGoogle Scholar
  112. 112.
    McNeill H, Ozawa M, Kemler R, Nelson WJ (1990) Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62(2):309–316.  https://doi.org/10.1016/0092-8674(90)90368-O CrossRefGoogle Scholar
  113. 113.
    Charnley M, Kroschewski R, Textor M (2012) The study of polarisation in single cells using model cell membranes. Integr Biol 4(9):1059–1071.  https://doi.org/10.1039/c2ib20111a CrossRefGoogle Scholar
  114. 114.
    Nye JA, Groves JT (2008) Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. Langmuir 24(8):4145–4149.  https://doi.org/10.1021/la703788h CrossRefPubMedGoogle Scholar
  115. 115.
    Duguay D, Foty RA, Steinberg MS (2003) Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol 253(2):309–323.  https://doi.org/10.1016/S0012-1606(02)00016-7 CrossRefPubMedGoogle Scholar
  116. 116.
    Humpolickova J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91(3):L23–L25.  https://doi.org/10.1529/biophysj.106.089474 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Chen Y, Muller JD, So PT, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77(1):553–567.  https://doi.org/10.1016/S0006-3495(99)76912-2 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Lin WC, Iversen L, Tu HL, Rhodes C, Christensen SM, Iwig JS, Hansen SD, Huang WY, Groves JT (2014) H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc Natl Acad Sci USA 111(8):2996–3001.  https://doi.org/10.1073/pnas.1321155111 CrossRefPubMedGoogle Scholar
  119. 119.
    Hong S, Troyanovsky RB, Troyanovsky SM (2013) Binding to F-actin guides cadherin cluster assembly, stability, and movement. J Cell Biol 201(1):131–143.  https://doi.org/10.1083/jcb.201211054 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Ozono K, Komiya S, Shimamura K, Ito T, Nagafuchi A (2011) Defining the roles of alpha-catenin in cell adhesion and cytoskeleton organization: isolation of F9 cells completely lacking cadherin-catenin complex. Cell Struct Funct 36(1):131–143.  https://doi.org/10.1247/csf.11009 CrossRefPubMedGoogle Scholar
  121. 121.
    Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80(6):2667–2677.  https://doi.org/10.1016/S0006-3495(01)76236-4 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378.  https://doi.org/10.1146/annurev.biophys.34.040204.144637 CrossRefPubMedGoogle Scholar
  123. 123.
    Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65(5):2021–2040.  https://doi.org/10.1016/S0006-3495(93)81253-0 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Sako Y, Nagafuchi A, Tsukita S, Takeichi M, Kusumi A (1998) Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 140(5):1227–1240.  https://doi.org/10.1083/jcb.140.5.1227 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Sanchez MF, Levi V, Weidemann T, Carrer DC (2015) Agonist mobility on supported lipid bilayers affects Fas mediated death response. FEBS Lett 589(23):3527–3533.  https://doi.org/10.1016/j.febslet.2015.10.009 CrossRefPubMedGoogle Scholar
  126. 126.
    Delanoe-Ayari H, Lenz P, Brevier J, Weidenhaupt M, Vallade M, Gulino D, Joanny JF, Riveline D (2004) Periodic adhesive fingers between contacting cells. Phys Rev Lett 93(10):108102.  https://doi.org/10.1103/PhysRevLett.93.108102 CrossRefPubMedGoogle Scholar
  127. 127.
    Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100(2):209–219.  https://doi.org/10.1016/S0092-8674(00)81559-7 CrossRefPubMedGoogle Scholar
  128. 128.
    Jacquemet G, Hamidi H, Ivaska J (2015) Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol 36:23–31.  https://doi.org/10.1016/j.ceb.2015.06.007 CrossRefPubMedGoogle Scholar
  129. 129.
    Surviladze Z, Waller A, Strouse JJ, Bologa C, Ursu O, Salas V, Parkinson JF, Phillips GK, Romero E, Wandinger-Ness A, Sklar LA, Schroeder C, Simpson D, Noth J, Wang J, Golden J, Aube J (2010) A potent and selective inhibitor of Cdc42 GTPase. Probe Reports from the NIH Molecular Libraries Program, Bethesda, MDGoogle Scholar
  130. 130.
    Escobar DJ, Desai R, Ishiyama N, Folmsbee SS, Novak MN, Flozak AS, Daugherty RL, Mo R, Nanavati D, Sarpal R, Leckband D, Ikura M, Tepass U, Gottardi CJ (2015) Alpha-catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism. J Cell Sci 128(6):1150–1165.  https://doi.org/10.1242/jcs.163824 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
  3. 3.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations