Advertisement

Protein Pattern Formation

  • Erwin Frey
  • Jacob Halatek
  • Simon Kretschmer
  • Petra Schwille
Chapter

Abstract

Protein pattern formation is essential for the spatial organisation of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in E. coli whose biological function is to ensure precise cell division. Cell polarisation, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion–reaction process. More generally, these functional modules of cells serve as model systems for self-organisation, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.

Keywords

Pattern formation Intracellular dynamics Min oscillations Cell polarity Self-organisation Proteins Membranes 

Notes

Acknowledgements

We thank Fridtjof Brauns, Yaron Caspi, Cees Dekker, Jonas Denk, and Fabai Wu for helpful discussions. This research was supported by the German Excellence Initiative via the program “NanoSystems Initiative Munich” (NIM), and the Deutsche Forschungsgemeinschaft (DFG) via project A09 and B02 within the Collaborative Research Center (SFB 1032) “Nanoagents for spatio-temporal control of molecular and cellular reactions”. SK was supported by a DFG fellowship through QBM.

References

  1. 1.
    Thom R (1983) Mathematical models of morphogenesis. Ellis Horwood, ChichesterGoogle Scholar
  2. 2.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72Google Scholar
  3. 3.
    Guckenheimer J, Holmes PJ (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New YorkGoogle Scholar
  4. 4.
    Cross M, Greenside H (2009) Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. 5.
    Wedlich-Soldner R, Altschuler S, Wu L, Li R (2003) Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299(5610):1231–1235PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Florian MC, Geiger H (2010) Concise review: polarity in stem cells, disease, and aging. Stem Cells 28(9):1623–1629PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20(11):2779–2788PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Gu Y, Vernoud V, Fu Y, Yang Z (2003) Rop GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54(380):93–101PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM, Hyman AA, Grill SW (2011) Polarization of PAR proteins by advective triggering of a pattern-forming system. Science (New York, NY) 334(6059):1137–1141CrossRefGoogle Scholar
  10. 10.
    Bement WM, Leda M, Moe AM, Kita AM, Larson ME, Golding AE, Pfeuti C, Su K-C, Miller AL, Goryachev AB, von Dassow G (2015) Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat Cell Biol 17(11):1471–1483PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8(9):957–962PubMedCrossRefGoogle Scholar
  13. 13.
    Varga V, Leduc C, Bormuth V, Diez S, Howard J (2009) Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138(6):1174–1183PubMedCrossRefGoogle Scholar
  14. 14.
    Reese L, Melbinger A, Frey E (2011) Crowding of molecular motors determines microtubule depolymerization. Biophys J 101(9):2190–2200PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Melbinger A, Reese L, Frey E (2012) Microtubule length regulation by molecular motors. Phys Rev Lett 108(25):258104PubMedCrossRefGoogle Scholar
  16. 16.
    Reese L, Melbinger A, Frey E (2014) Molecular mechanisms for microtubule length regulation by kinesin-8 and xmap215 proteins. Interface Focus 4(6):20140031PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Raskin DM, de Boer PA (1999) MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol 181(20):6419–6424PubMedPubMedCentralGoogle Scholar
  18. 18.
    Raskin DM, de Boer PA (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96(9):4971–4976PubMedCrossRefGoogle Scholar
  19. 19.
    Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34(1):82–90PubMedCrossRefGoogle Scholar
  20. 20.
    Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76:539–562PubMedCrossRefGoogle Scholar
  21. 21.
    Loose M, Kruse K, Schwille P (2011) Protein self-organization: lessons from the min system. Annu Rev Biophys 40(1):315–336PubMedCrossRefGoogle Scholar
  22. 22.
    Szeto TH, Rowland SL, Rothfield LI, King GF (2002) Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc Natl Acad Sci USA 99(24):15693–15698PubMedCrossRefGoogle Scholar
  23. 23.
    Hu Z, Lutkenhaus J (2003) A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Mol Microbiol 47(2):345–355PubMedCrossRefGoogle Scholar
  24. 24.
    Lackner LL, Raskin DM, de Boer PAJ (2003) ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. J Bacteriol 185(3):735–749PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mileykovskaya E, Fishov I, Fu X, Corbin BD, Margolin W, Dowhan W (2003) Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo. J Biol Chem 278(25):22193–22198PubMedCrossRefGoogle Scholar
  26. 26.
    Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96(26):14819–14824PubMedCrossRefGoogle Scholar
  27. 27.
    Hu Z, Lutkenhaus J (2001) Topological regulation of cell division in E. coli. Spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol Cell 7(6):1337–1343PubMedCrossRefGoogle Scholar
  28. 28.
    Hu Z, Gogol EP, Lutkenhaus J (2002) Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci USA 99(10):6761–6766PubMedCrossRefGoogle Scholar
  29. 29.
    Park K-T, Wu W, Battaile KP, Lovell S, Holyoak T, Lutkenhaus J (2011) The min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146(3):396–407PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Shih Y-L, Huang K-F, Lai H-M, Liao J-H, Lee C-S, Chang C-M, Mak H-M, Hsieh C-W, Lin C-C (2011) The N-terminal amphipathic helix of the topological specificity factor MinE is associated with shaping membrane curvature. PLoS ONE 6(6):e21425PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20(9):411–418PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16(1):38–46PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Denk J, Huber L, Reithmann E, Frey E (2016) Active curved polymers form vortex patterns on membranes. Phys Rev Lett 116(17):178301PubMedCrossRefGoogle Scholar
  34. 34.
    Ramirez-Diaz DA, García-Soriano DA, Raso A, Mücksch J, Feingold M, Rivas G, Schwille P (2018) Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol 16(5):e2004845PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bi E, Park H-O (2012) Cell polarization and cytokinesis in budding yeast. Genetics 191(2):347–387PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Freisinger T, Klünder B, Johnson J, Müller N, Pichler G, Beck G, Costanzo M, Boone C, Cerione RA, Frey E, Wedlich-Soldner R (2013) Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops. Nat Commun 4:1807PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Goryachev AB, Pokhilko AV (2008) Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett 582(10):1437–1443PubMedCrossRefGoogle Scholar
  38. 38.
    Klünder B, Freisinger T, Wedlich-Soldner R, Frey E (2013) GDI-mediated cell polarization in yeast provides precise spatial and temporal control of Cdc42 signaling. PLoS Comput Biol 9(12):e1003396PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bose I, Irazoqui JE, Moskow JJ, Bardes ES, Zyla TR, Lew DJ (2001) Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J Biol Chem 276(10):7176–7186PubMedCrossRefGoogle Scholar
  40. 40.
    Butty A-C, Perrinjaquet N, Petit A, Jaquenoud M, Segall JE, Hofmann K, Zwahlen C, Peter M (2002) A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J 21(7):1565–1576PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ (2008) Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr Biol 18(22):1719–1726PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bendezu FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG (2015) Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLoS Biol 13(4):e1002097PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Laan L, Koschwanez JH, Murray AW (2015) Evolutionary adaptation after crippling cell polarization follows reproducible trajectories. eLife 4:e09638PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Munro E, Nance J, Priess JR (2004) Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell 7(3):413–424PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Goehring NW (2014) PAR polarity: from complexity to design principles. Exp Cell Res 328(2):258–266PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Goehring NW, Grill SW (2013) Cell polarity: mechanochemical patterning. Trends in Cell Biol 23(2):72–80CrossRefGoogle Scholar
  48. 48.
    Green RA, Paluch E, Oegema K (2012) Cytokinesis in animal cells. Annu Rev Cell Dev Biol 28:29–58PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Gerdes K, Howard M, Szardenings F (2010) Pushing and pulling in prokaryotic DNA segregation. Cell 141(6):927–942PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bange G, Sinning I (2013) SIMIBI twins in protein targeting and localization. Nat Struct Mol Biol 20(7):776–780PubMedCrossRefGoogle Scholar
  51. 51.
    Treuner-Lange A, Søgaard-Andersen L (2014) Regulation of cell polarity in bacteria. J Cell Biol 206(1):7–17PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Schumacher D, Bergeler S, Harms A, Vonck J, Huneke-Vogt S, Frey E, Søgaard-Andersen L (2017) The PomXYZ proteins self-organize on the bacterial nucleoid to stimulate cell division. Dev Cell 41(3):299–314PubMedCrossRefGoogle Scholar
  53. 53.
    Bergeler S, Frey E (2018) Regulation of Pom cluster dynamics in Myxococcus xanthus. PLoS Comput Biol 14(8):e1006358PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Schuhmacher JS, Thormann KM, Bange G, Albers S-V (2015) How bacteria maintain location and number of flagella? FEMS Microbiol Rev 39(6):812–822PubMedCrossRefGoogle Scholar
  55. 55.
    Halatek J, Brauns F, Frey E (2018) Self-organization principles of intracellular pattern formation. Philos Trans R Soc B 373(1747):20170107CrossRefGoogle Scholar
  56. 56.
    Segel LA, Jackson JL (1972) Dissipative structure: an explanation and an ecological example. J Theor Biol 37(3):545–559PubMedCrossRefGoogle Scholar
  57. 57.
    Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science (New York, NY) 329(5999):1616–1620CrossRefGoogle Scholar
  58. 58.
    Halatek J, Frey E (2018) Rethinking pattern formation in reaction–diffusion systems. Nat Phys 14(5):507–514CrossRefGoogle Scholar
  59. 59.
    Huang KC, Meir Y, Wingreen NS (2003) Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proc Natl Acad Sci USA 100(22):12724–12728PubMedCrossRefGoogle Scholar
  60. 60.
    Halatek J, Frey E (2012) Highly canalized MinD transfer and MinE sequestration explain the origin of robust MinCDE-protein dynamics. Cell Rep 1(6):741–752PubMedCrossRefGoogle Scholar
  61. 61.
    Meacci G, Ries J, Fischer-Friedrich E, Kahya N, Schwille P, Kruse K (2006) Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy. Phys Biol 3(4):255–263PubMedCrossRefGoogle Scholar
  62. 62.
    Shih Y-L, Fu X, King GF, Le T, Rothfield L (2002) Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J 21(13):3347–3357PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Aranson IS, Kramer L (2002) The world of the complex Ginzburg-Landau equation. Rev Mod Phys 74(January):99–143CrossRefGoogle Scholar
  64. 64.
    Gray P, Scott SK (1983) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. Chem Eng Sci 38(1):29–43CrossRefGoogle Scholar
  65. 65.
    Gray P, Scott SK (1984) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system A + 2B → 3B; B → C. Chem Eng Sci 39(6):1087–1097CrossRefGoogle Scholar
  66. 66.
    Gray P, Scott SK (1985) Sustained oscillations and other exotic patterns of behavior in isothermal reactions. J Phys Chem 89(1):22–32CrossRefGoogle Scholar
  67. 67.
    Pearson JE (1993) Complex patterns in a simple system. Science (New York, NY) 261(5118):189–192CrossRefGoogle Scholar
  68. 68.
    Lee KJ, McCormick WD, Ouyang Q, Swinney HL (1993) Pattern formation by interacting chemical fronts. Science (New York, NY) 261(5118):192–194CrossRefGoogle Scholar
  69. 69.
    Denk J, Kretschmer S, Halatek J, Hartl C, Schwille P, Frey E (2018) MinE conformational switching confers robustness on self-organized Min protein patterns. Proc Natl Acad Sci USA 115(18):4553–4558PubMedGoogle Scholar
  70. 70.
    Wu F, van Schie BGC, Keymer JE, Dekker C (2015) Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. Nat Nanotechnol 10(8):719–726PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Shih Y-L, Kawagishi I, Rothfield L (2005) The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58(4):917–928PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Wu F, Halatek J, Reiter M, Kingma E, Frey E, Dekker C (2016) Multistability and dynamic transitions of intracellular Min protein patterns. Mol Syst Biol12(6):642–653PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Corbin BD, Yu X-C, Margolin W (2002) Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J 21(8):1998–2008PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Touhami A, Jericho M, Rutenberg AD (2006) Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast. J Bacteriol 188(21):7661–7667PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Varma A, Huang KC, Young KD (2008) The Min system as a general cell geometry detection mechanism: branch lengths in Y-shaped Escherichia coli cells affect Min oscillation patterns and division dynamics. J Bacteriol 190(6):2106–2117PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Männik J, Wu F, Hol FJH, Bisicchia P, Sherratt DJ, Keymer JE, Dekker C (2012) Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes. Proc Natl Acad Sci USA 109(18):6957–6962PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Fange D, Elf J (2006) Noise-induced Min phenotypes in E. coli. PLoS Comput Biol 2(6):e80PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Renner LD, Weibel DB (2012) MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli. J Biol Chem 287(46):38835–38844PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S (2007) A mass conserved reaction-diffusion system captures properties of cell polarity. PLoS Comput Biol 3(6):e108PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kac M (1966) Can one hear the shape of a drum? Am Math Mon 73(4):1CrossRefGoogle Scholar
  81. 81.
    Thalmeier D, Halatek J, Frey E (2016) Geometry-induced protein pattern formation. Proc Natl Acad Sci USA 113(3):548–553PubMedCrossRefGoogle Scholar
  82. 82.
    Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science (New York, NY) 320(5877):789–792CrossRefGoogle Scholar
  83. 83.
    Caspi Y, Dekker C (2016) Mapping out min protein patterns in fully confined fluidic chambers. eLife 5:e19271PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Loose M, Fischer-Friedrich E, Herold C, Kruse K, Schwille P (2011) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18(5):577–583PubMedCrossRefGoogle Scholar
  85. 85.
    Schweizer J, Loose M, Bonny M, Kruse K, Mönch I, Schwille P (2012) Geometry sensing by self-organized protein patterns. Proc Natl Acad Sci USA 109(38):15283–15288PubMedCrossRefGoogle Scholar
  86. 86.
    Zieske K, Schwille P (2013) Reconstitution of pole-to-pole oscillations of min proteins in microengineered polydimethylsiloxane compartments. Angew Chem Int Ed Engl 52(1):459–462PubMedCrossRefGoogle Scholar
  87. 87.
    Zieske K, Chwastek G, Schwille P (2016) Protein patterns and oscillations on lipid monolayers and in microdroplets. Angew Chem 128(43):13653–13657CrossRefGoogle Scholar
  88. 88.
    Ivanov V, Mizuuchi K (2010) Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc Natl Acad Sci USA 107(18):8071–8078PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Zieske K, Schwille P (2014) Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife 3:e03949PubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bonny M, Fischer-Friedrich E, Loose M, Schwille P, Kruse K (2013) Membrane binding of MinE allows for a comprehensive description of Min-protein pattern formation. PLoS Comput Biol 9(12):e1003347PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80(3):612–627PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Vecchiarelli AG, Li M, Mizuuchi M, Hwang LC, Seol Y, Neuman KC, Mizuuchi K (2016) Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proc Natl Acad Sci USA 113(11):E1479–E1488PubMedCrossRefGoogle Scholar
  93. 93.
    Halatek J, Frey E (2014) Effective 2D model does not account for geometry sensing by self-organized proteins patterns. Proc Natl Acad Sci USA 111(18):E1817–E1817PubMedCrossRefGoogle Scholar
  94. 94.
    Kretschmer S, Zieske K, Schwille P (2017) Large-scale modulation of reconstituted Min protein patterns and gradients by defined mutations in MinE’s membrane targeting sequence. PLoS one 12(6):e0179582PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Erwin Frey
    • 1
  • Jacob Halatek
    • 1
  • Simon Kretschmer
    • 2
    • 3
  • Petra Schwille
    • 2
  1. 1.Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of PhysicsLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Department of Cellular and Molecular BiophysicsMax-Planck-Institute of BiochemistryMartinsriedGermany
  3. 3.Graduate School of Quantitative BiosciencesLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations