Advertisement

Applications of Deep Eutectic Solvents

  • Yizhak Marcus
Chapter

Abstract

Since their advent in 2003, deep eutectic solvents have found applications in numerous fields where their properties as solvents, permitting the dissolutions of a large variety of solutes, and their being “green”, i.e., ecologically friendly as described in Chap.  1, gave them advantages over more conventional solvents. It is possible in the present chapter to present only examples of the numerous applications that have been proposed over less than a score of years that have passed since the first publication regarding the deep eutectic solvents.

References

  1. 1.
    Clarke CJ, Ti WC, Levers O, Brohl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Joos B, Vranken T, Marchal W, Safari M, Van Bael MK, Hardy AT (2018) Eutectogels: a new class of solid composite electrolytes for Li/Li ion batteries. Chem Mater 30:655–662CrossRefGoogle Scholar
  3. 3.
    Abbott AP, Capper G, Davies DL, McKenzie KJ, Obi SU (2006) Solubility of metal oxides in deep eutectic solvents based on choline chloride. J Chem Eng Data 51:1280–1282CrossRefGoogle Scholar
  4. 4.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Abbott AP, Frisch G, Ryder KS (2008) Metal complexation in ionic liquids. Ann Rep Progr Chem A 104:21–45CrossRefGoogle Scholar
  6. 6.
    Abbott AP, Capper G, Davies DL, Rasheed RK, Shikotra P (2005) Selective extraction of metals from mixed oxide matrices using choline-based ionic liquids. Inorg Chem 44:6497–6499PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Abbott AP, Capper G, Davies DL, Shikotra P (2006) Processing metal oxides using ionic liquids. Trans Inst Min Metall C 115:15–18Google Scholar
  8. 8.
    Parnham ER, Drylie EA, Wheatley PS, Slawin AMZ, Morris RE (2006) Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angew Chem Int Ed 45:4962–4968CrossRefGoogle Scholar
  9. 9.
    Gao F, Huang L, Ma Y, Jiao S, Jiang Y, Bi Y (2017) Ionothermal synthesis, characterization of a new layered gallium phosphate with an unusual heptamer SBU. J Solid State Chem 254:155–159CrossRefGoogle Scholar
  10. 10.
    Lohmeier S-J, Wiebecke M, Behrens P (2008) Ionothermal synthesis and characterization of a layered propylene diammonium gallium phosphate. Z Anorg Allg Chem 634:147–152CrossRefGoogle Scholar
  11. 11.
    Drylie EA, Wragg DS, Parnham ER, Wheatley PS, Slawin AMZ, Warren JE, Morris RE (2007) Ionothermal synthesis of unusual choline-templated cobalt aluminophosphates. Angew Chem Int Ed 46:7835–7843CrossRefGoogle Scholar
  12. 12.
    Aidoudi FH, Byrne PJ, Allan PK, Teat SJ, Lightfoot P, Morris RE (2011) Ionic liquids and deep eutectic mixtures as new solvents for synthesis of vanadium fluorides and oxyfluorides. Dalton Trans 40:4324–4331PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Diaz-Alvarez AE, Francos J, Lastra-Barreira B, Crochet P, Cadierno V (2011) Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chem Commun 47:6208–6227CrossRefGoogle Scholar
  14. 14.
    Gu Y, Jerome F (2013) Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 42:9550–9570PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zhrina I, Nasikin M, Mulia K, Prajanto M, Yanuar A (2017) Molecular interactions between betaine monohydrate-glycerol deep eutectic solvents and palmitic acid: computational and experimental studies. J Mol Liq 251:28–34CrossRefGoogle Scholar
  16. 16.
    Garcia-Alvarez J (2014) Deep eutectic solvents: environmentally friendly media for metal-catalyzed organic reactions. ACS Symp Ser 1186:37–52CrossRefGoogle Scholar
  17. 17.
    Garcia-Alvarez J (2015) Deep eutectic solvents: promising sustainable solvents for metal-catalyzed and metal-mediated organic reactions. Eur J Inorg Chem 2015:5147–5157CrossRefGoogle Scholar
  18. 18.
    Liu P, Hao JW, Mo LP, Zhang ZH (2015) Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv 5:48675–48704CrossRefGoogle Scholar
  19. 19.
    Vidal C, Merz L, Garcia-Alvarez J (2015) Deep eutectic solvents: biorenewable reaction media for Au(I)-catalyzed cycloisomerizations and one-pot tandem cycloisomerization/Diels-Alders reactions. Green Chem 17:3870–3878CrossRefGoogle Scholar
  20. 20.
    Sheldon RA (2016) Biocatalysis and biomass conversion in alternative reaction media. Chem Eur J 22:12984–12999PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wazeer I, Hayyan M, Hadj-Kali MK (2018) Deep eutectic solvents: designer fluids for chemical processes. J Chem Technol Biotechnol 93:945–958CrossRefGoogle Scholar
  22. 22.
    Ge X, Gu C, Wang X, Tu J (2017) Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. J Mater Chem A 5:8209–8229CrossRefGoogle Scholar
  23. 23.
    Khandelwal S, Tailor YK, Kumar M (2016) Deep eutectic solvents (DESs), as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq 215:345–386CrossRefGoogle Scholar
  24. 24.
    Juneidi I, Hayyan M, Hashim MA (2018) Intensification of biotransformations using deep eutectic solvents: overview and outlook. Process Biochem 66:33–60CrossRefGoogle Scholar
  25. 25.
    Gutierrez MC, Ferrer ML, Yuste L, Rojo F, del Monte F (2010) Bacteria incorporated in deep eutectic solvents through freeze drying. Angew Chem Int Ed 49:2158–2162CrossRefGoogle Scholar
  26. 26.
    Khodaverdian S, Dabirmanesh B, Hrydari A, Dashtban-moghadam E, Khaje K, Ghazi F (2018) Activity, stability and structure of lactase in betaine-based natural deep eutectic solvents. Int J Biol Macromol 107:2574–2579PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Singh BS, Lobo HR, Pinjari DV, Jarag KJ, Pandit AB. Shankarling GS (2013) Ultrasound and deep eutectic solvents (DES): a novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason Sonochem 20:287–293PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Maleki A, Aghaei M, Hafizi-Atabak HR, Ferdowsi M (2017) Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason Sonochem 37:260–266PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17:3025–3032PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    De Santi V, Gardellini F, Brinchi L, Germani R (2012) Novel Brønsted acidic deep eutectic solvents as reaction media for esterification of carboxylic acids with alcohols. Tetrahedron Lett 53:5151–5155Google Scholar
  31. 31.
    Vidal C, Suarez FJ, Garcia-Alvarez J (2014) Deep Eutectic solvents (DES) as green reaction media for the redox isomerization of allylic alcohols into carbonyl compounds catalyzed by the ruthenium complex [RuC10H16-Cl2(benzimidazole)]. Catal Commun 44:76–79CrossRefGoogle Scholar
  32. 32.
    Cicco L, Rodriguez-Alvarez MJ, Perna FM, Garcia-Alvarez J, Capriati V (2017) One-pot sustainable synthesis of tertiary alcohols by combining ruthenium-catalyzed isomerization of allylic alcohols and chemoselecive addition of polar organometallic reagents in deep eutectic solvents. Green Chem 19:3069–3077CrossRefGoogle Scholar
  33. 33.
    Marset X, Guillena G, Ramon DJ (2017) Deep eutectic solvents as reaction media for the palladium catalyzed C-S bond formation: scope and mechanistic studies. Chem Eur J 23:10522–10525PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Shaabani A, Afshan R (2017) Magnetic Ugi-functionalized graphene oxide complexed with copper nanoparticles: efficient catalyst toward Ullman coupling reaction in deep eutectic solvents. J Colloid Interface Sci 510:384–394PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Brenna D, Massolo E, Puglisi A, Rossi S, Celentano G, Benaglia M, Capriati V (2016) Towards the development of continuous, organocatalytic, and stereoselective reactions in deep eutectic solvents. Beilstein J Org Chem 12:2620–2626PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Massolo E, Palmieri S, Benagklia M, Capriati V, Perna FM (2016) Stereoselective organocatalyzed reactions in deep eutectic solvents: highly tunable and biorenewable reaction media for sustainable organic synthesis. Green Chem 18:792–797CrossRefGoogle Scholar
  37. 37.
    Martinez R, Berbegal L, Guillena G, Ramon DJ (2016) Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents. Green Chem 18:1724–1730CrossRefGoogle Scholar
  38. 38.
    Singh R, Singh A (2017) Regio- and stereoselective synthesis of novel trispiropyrrolidine thiapyrrolizidines using deep eutectic solvent as an efficient reaction media. J Iran Chem Soc 14:1119–1129CrossRefGoogle Scholar
  39. 39.
    Maugeri Z, Leitner W, Dominguez de Maria P (2013) Chymotripsin catalyzed peptide synthesis in deep eutectic solvent. Eur J Org Chem 2013:4223–4228CrossRefGoogle Scholar
  40. 40.
    Sanap AS, Shankarling GS (2014) Eco-friendly and recyclable media for rapid synthesis of tricyanovinylated aromatics using biocatalyst and deep eutectic solvents. Catal Commun 40:58–62CrossRefGoogle Scholar
  41. 41.
    Bubalo MC, Tušek AJ, Vinković M, Radošević K, Srček VG, Redovniković IR (2015) Cholinium-based deep eutectic solvents and ionic liquids for lipase-catalyzed synthesis of butyl acetate. J Mol Catal B Enzym 122:188–190CrossRefGoogle Scholar
  42. 42.
    Papadopoulo AA, Efstathiadou E, Patila M, Polydera AC, Stamatis H (2016) Deep eutectic solvents for peroxidation reactions catalyzed by heme-dependent biocatalysts. Ind Eng Chem Res 55:5145–5151CrossRefGoogle Scholar
  43. 43.
    Ranganathan S, Zeitlhofer S, Sieber V (2017) Development of a lipase-mediated epoxidation process for monoterpenes in choline chloride-based deep eutectic solvents. Green Chem 19:2576–2586CrossRefGoogle Scholar
  44. 44.
    Gorke J, Srienc F, Kazlauskas R (2010) Towards advanced ionic liquids, polar enzyme-friendly solvents for biocatalysis. Biotechnol Bioproc Eng 15:40–53CrossRefGoogle Scholar
  45. 45.
    Zhao H, Baker GA (2013) Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Technol Biotechnol 88:3–12CrossRefGoogle Scholar
  46. 46.
    Padvi SA, Dalal DS (2017) Choline chloride-ZnCl2: recyclable and efficient deep eutectic solvent for the [2 + 3] cycloaddition reaction of organic nitriles with sodium azide. Synth Commun 47:779–787CrossRefGoogle Scholar
  47. 47.
    Nguyen HT, Tran PH (2016) An extremely efficient and green method for the acylation of secondary alcohols, phenols and naphthols with a deep eutectic solvents as a catalyst. RSC Adv 6:98365–98368CrossRefGoogle Scholar
  48. 48.
    Alhassan Y, Kumar N, Bugaje IM (2016) Catalytic upgrading of waste tire pyrolysis oil via supercritical esterification with deep eutectic solvents (green solvents and catalysts). J Energy Inst 89:683–693CrossRefGoogle Scholar
  49. 49.
    Taysun MB, Sert E, Atalay FS (2016) Physical properties of benzyl-trimethylammonium chloride based deep eutectic solvents and employment as catalyst. J Mol Liq 223:845–852CrossRefGoogle Scholar
  50. 50.
    Taysun MB, Sert E, Atalay FS (2017) Effect of hydrogen bond donor on the physical properties of benzyltrimethylammonium chloride based deep eutectic solvents and their usage in 2-ethylhexyl acetate synthesis as catalyst. J Chem Eng Data 62:1173–1181CrossRefGoogle Scholar
  51. 51.
    Vidal C, Garcia-Alvarez J, Hernan-Gomez A, Kennedy AR, Hevia E (2016) Exploiting deep eutectic solvents and organolithium reagent partnership: chemoselective ultrafast addition to imines and quinolines under aerobic ambient temperature conditions. Angew Chem Int Ed 55:16145–16148CrossRefGoogle Scholar
  52. 52.
    Chirea M, Freitas A, Vasile BS, Ghitulica C, Pereira CM, Silva F (2011) Gold nanowire networks: synthesis, characterization, and catalytic activity. Langmuir 27:3906–3913PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Oh JH, Lee JS (2014) Synthesis of gold microstructures with surface nanoroughness using a deep eutectic solvent for catalytic and diagnostic applications. J Nanosci Nanotechnol 14:3753–3757PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Oumahi C, Lombard J, Casale S, Calers C, Delannoy L, Louis C, Carrier X (2014) Heterogeneous catalyst preparation in ionic liquids: titania supported gold nanoparticles. Catal Today 235:58–71CrossRefGoogle Scholar
  55. 55.
    Jia H, An J, Guo X, Su C, Zhang L, Zhou H, Xie C (2015) Deep eutectic solvent-assisted growth of gold nanofoams and their excellent catalytic properties. J Mol Liq 212:763–766CrossRefGoogle Scholar
  56. 56.
    Shuwa SM, Al-Hajri RS, Jibril BY, Al-Waheibi YM (2015) Novel deep eutectic solvent-dissolved molybdenum oxide catalyst for the upgrading of heavy crude oil. Ind Eng Chem Res 54:3589–36001CrossRefGoogle Scholar
  57. 57.
    Gage SH, Ruddy DA, Pylypenko S, Richards RM (2018) Deep eutectic solvent approach towards nickel/nickel nitride nanocomposites. Catal Today 306:9–15CrossRefGoogle Scholar
  58. 58.
    Maleki A, Kari T, Aghael M (2017) Fe3O4@SiO2@TiO2-OSO3H: an efficient hierarchical nanocatalyst for the organic quinazolines synthesis. J Porous Mater 24:1481–1496CrossRefGoogle Scholar
  59. 59.
    Marset X, Khoshnood A, Sotorrios L, Gomez-Bengoa E, Alonso DA, Ramon DJ (2017) Deep eutectic solvent compatible metallic catalysts: cationic pyridinephosphine ligands in palladium catalyzed cross-coupling reactions. ChemCatChem 9:1269–1275CrossRefGoogle Scholar
  60. 60.
    Marset XC, Perez JM, Ramon DS (2016) Cross-dehydrogenative coupling reaction using copper oxide impregnated on magnetite in deep eutectic solvents. Green Chem 18:826–833CrossRefGoogle Scholar
  61. 61.
    Mota-Morales JD, Sanchez-Leija RJ, Carranza A, Pojman JA, del Monte F, Luna-Barcenas G (2018) Free radical polymerization of and in deep eutectic solvents: green synthesis of functional materials. Progr Polym Sci 78:139–153CrossRefGoogle Scholar
  62. 62.
    Liu Y, Wang Y, Dai Q, Zhou Y (2016) Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal Chim Acta 936:168–178PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wu X, Du J, Li M, Wu L, Han C, Su F (2018) Recent advances in green reagents for molecularly imprinted polymers. RSC Adv 8:311–327CrossRefGoogle Scholar
  64. 64.
    Loow YL, New EK, Yang GH, Ang LY, Foo LYW, Wu TY (2017) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24:3591–3618CrossRefGoogle Scholar
  65. 65.
    van Osch DJGP, Kollau MJBM, van den Bruinhorst A, Asikainen S, Rocha MAA, Kroon M (2017) Ionic liquids and deep eutectic solvents for lignocellulose biomass fractionation. Phys Chem Chem Phys 19:2636–2665PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Duffy JA, Ingram MD (1977) Metal aquo ions in molten salt hydrates. A new class of mineral acids? Inorg Chem 16:2988CrossRefGoogle Scholar
  67. 67.
    Linke WF, Seidell A (1965) Solubilities of inorganic and metal-organic compounds, 4th edn, vol II, K – Z. American Chemical Society, Washington, p 1659Google Scholar
  68. 68.
    Schestakow M, Karadagli I, Ratke L (2016) Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydr Polym 137:642–649PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Rege A, Schestakow M, Karadagli I, Ratke L, Itskov M (2016) Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter 12:7079–7088PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sust Chem Eng 1:858–870CrossRefGoogle Scholar
  71. 71.
    Cao NJ, Xu Q, Che LF (1995) Acid hydrolysis of cellulose in zinc chloride solution. Appl Biochem Biotechnol 51–52:21–28CrossRefGoogle Scholar
  72. 72.
    Menegassi de Almeida R, Li J, Nederlof C, O’Connor P, Mkkee M, Moulijn JA (2010) Cellulose conversion to isosorbide in molten salt hydrate media. ChenSusChem 3:325–328CrossRefGoogle Scholar
  73. 73.
    Richards NJ, Williams DG (1970) Complex formation between aqueous zinc chloride and cellulose-related D-glucopyranosides. Carbohydr Res 12:409–420CrossRefGoogle Scholar
  74. 74.
    Liu Z, Zhang C, Liu R, Zhang W, Kang H, Li P, Huang Y (2016) Dissolution of cellulose in the aqueous solutions of chloride salts: Hofmeister series considerations. Cellulose 23:295–305CrossRefGoogle Scholar
  75. 75.
    Xu Q, Chen C, Rosswurm K, Yao T, Janaswamy S (2016) A facile route to prepare cellulose-based films. Carbohydr Polym 149:274–281PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lin M, Shang X, Liu P, Xie F, Chen X, Sun Y, Wan J (2016) Zinc chloride aqueous solution as a solvent for starch. Carbohydr Polym 136:266–273PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Williams HE (1921) Action of thiocyanates on cellulose. J Soc Chem Ind (London) 40:221–224Google Scholar
  78. 78.
    Kuga S (1980) The porous structure of cellulose gel regenerated from calcium thiocyanate solution. J Coll Interf Sci 77:413–417CrossRefGoogle Scholar
  79. 79.
    Hattori M, Koga T, Shimaya Y, Saito M (1998) Aqueous calcium thiocyanate solution as a cellulose solvent. Structure and interactions with cellulose. Polym J 30:43–48CrossRefGoogle Scholar
  80. 80.
    Hattori M, Shimaya Y, Saito M (1998) Structural changes in wood pulp treated by 55 wt% aqueous calcium thiocyanate solution. Polym J 30:37–42CrossRefGoogle Scholar
  81. 81.
    Hattori M, Shimaya Y, Saito M (1998) Solubility and dissolved cellulose in aqueous calcium and sodium thiocyanate solution. Polym J 30:49–55CrossRefGoogle Scholar
  82. 82.
    Fischer S, Voigt W, Fischer K, Spange S, Vilsmeier E (1998) Behavior of cellulose in hydrated melts. Molten Salt Forum 5–6:477–480Google Scholar
  83. 83.
    Fischer S, Voigt W, Fischer K (1999) The behavior of cellulose in hydrated melts of the composition LiX·nH2O (X = I, NO3, CH3CO2, ClO4). Cellulose 6:213–219CrossRefGoogle Scholar
  84. 84.
    Fischer S, Thummler K, Pfewiffer K, Liebert T, Heinze T (2002) Evaluation of molten inorganic salt hydrates as reaction medium for the derivatization of cellulose. Cellulose 9:293–300CrossRefGoogle Scholar
  85. 85.
    Leipner H, Fischer S, Brendler E, Voigt W (2000) Structural changes of cellulose dissolved in molten salt hydrates. Macromol Chem Phys 201:2041–2048CrossRefGoogle Scholar
  86. 86.
    Yang YJ, Shin JM, Tong HK, Kimura S, Wada M, Kim UJ (2014) Cellulose dissolution in lithium bromide solutions. Cellulose 21:1175–1181CrossRefGoogle Scholar
  87. 87.
    Deng W, Kennedy JR, Tsilomelekis G, Zheng W, Nikolakis V (2015) Cellulose hydrolysis in acidified LiBr molten salt hydrate media. Ind Eng Chem Res 54:5226–5236CrossRefGoogle Scholar
  88. 88.
    Kihlman M, Medronho BF, Romano AL, Germagara U, Lindman R (2013) Cellulose dissolution in an alkali based solvent: influence of additives and pretreatments. J Braz Chem Soc 24:295–303CrossRefGoogle Scholar
  89. 89.
    Lau BBY, Yeung T, Patterson RJ, Aldous L (2017) A cation study on rice husk biomass pretreatment with aqueous hydroxides: cellulose solubility does not correlate with improved enzymatic hydrolysis. ACS Sust Chem Eng 5:5320–5329CrossRefGoogle Scholar
  90. 90.
    Fischer S, Thümmler K (2010) Molten inorganic salts as reaction medium for cellulose. ACS Symp Ser 1033:91–101CrossRefGoogle Scholar
  91. 91.
    Xia S, Baker GA, Li H, Ravula S, Zhao H (2014) Aqueous ionic liquids and deep eutectic solvents for cellulose biomass pretreatment and saccharification. RSC Adv 4:10586–10596PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Tenhunen TM, Lewandowska AE, Orelma H, Johansson LS, Virtanen T, Harlin A, Österberg M, Eichhorn SJ, Tammelin T (2018) Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea. Cellulose 25:137–150CrossRefGoogle Scholar
  93. 93.
    Fang C, Thomsen MH, Frankaer CG, Brudecki GP, Schmidt JE, AlNashef IM (2017) Reviving pretreatment effectiveness of deep eutectic solvents on lignocellulosic date palm residues by prior recalcitrance reduction. Ind Eng Chem Res 56:3167–3174CrossRefGoogle Scholar
  94. 94.
    Chen Z, Wan C (2017) Ultrafast fractionation of lignocellulose biomass by microwave assisted deep eutectic solvent pretreatment. Bioresour Technol 250:532–537PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Tian D, Hu J, Bao J, Chandra RP, Sadler JN, Lu C (2017) Lignin valorization: lignin nanoparticles as high bio-additive for multifunctional nanocomposites. Biotechnol Biofuels 10:192/1–11Google Scholar
  96. 96.
    Lynam JG, Kumar B, Wong MJ (2017) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose: thermal stability and density. Bioresour Technol 238:684–689PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Francisco M, Van der Bruihorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157CrossRefGoogle Scholar
  98. 98.
    Dominguez de Maria P (2014) Recent trends in (lingo)cellulose dissolution using neoteric solvents: switchable, distillable, and bio-based ionic liquids. J Chem Technol Biotechnol 89:11–18CrossRefGoogle Scholar
  99. 99.
    Hou XD, Feng GJ, Ye M, Huang CM, Zhang Y (2017) Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238:139–146PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872CrossRefGoogle Scholar
  101. 101.
    Hayyan M, Mjalli FS, Hashim MA, AlNashef IM (2010) A novel technique for separating glycerin from palm oil-based biodiesel using ionic liquids. Fuel Proc Technol 91:116–120CrossRefGoogle Scholar
  102. 102.
    Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Elimination of all free glycerol and reduction of total glycerol from palm oil-based biodiesel using non-glycerol based deep eutectic solvents. Sep Sci Technol 48:1184–1193CrossRefGoogle Scholar
  103. 103.
    Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Using deep eutectic solvents based on methyltriphenylphosphonium bromide for the removal of glycerol, from palm oil-based biodiesel. Energy Fuels 25:2671–2678CrossRefGoogle Scholar
  104. 104.
    Shahbaz K, Baroutian S, Mjalli FS, Hashim MA, AlNashef IM (2012) Prediction of glycerol removal from biodiesel using ammonium and phosphonium based deep eutectic solvents using artificial intelligence techniques. Chemometr Intell Lab Syst 118:193–199CrossRefGoogle Scholar
  105. 105.
    Williamson ST, Shahbaz K, Mjalli FS, AlNashef IM, Farid MM (2017) Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renew Energy 114:480–488CrossRefGoogle Scholar
  106. 106.
    Hayyan A, Hashim MA, Mjalli FS, Hayyan M, AlNashef IM (2013) A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil. Chem Eng Sci 92:81–88CrossRefGoogle Scholar
  107. 107.
    Hayyan A, Hashim MA, Mjalli FS, Hayyan M, AlNashef IM (2013) A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel. Ind Crops Prod 46:392–398CrossRefGoogle Scholar
  108. 108.
    Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Eutectic solvents for the removal of residual palm-oil-based biodiesel catalyst. Sep Purif Technol 81:216–223CrossRefGoogle Scholar
  109. 109.
    Bewley BR, Berkaliev A, Henriksen H, Ball DB, Ott LS (2015) Waste glycerol from biodiesel synthesis as a component in deep eutectic solvents. Fuel Proc Technol 138:419–423CrossRefGoogle Scholar
  110. 110.
    Huang W, Tang S, Zhao H, Tian S (2013) Activation of commercial CaO for biodiesel production from rapeseed oil using a novel deep eutectic solvent. Ind Eng Chem Res 52:11943–11947CrossRefGoogle Scholar
  111. 111.
    Homan T, Shahbaz K, Farid MM (2017) Improving the production of propyl and butyl ester-based biodiesel by purification using deep eutectic solvents. Sep Purif Technol 174:570–576CrossRefGoogle Scholar
  112. 112.
    Santosh AK, Kiran A, Anant J, Dayanand N, Rahul P, Poonam K (2017) Optimization of conversion of Pongamia pinnata oil with high FFA to biodiesel using novel deep eutectic solvent. J Environ Chem Eng 5:5331–5336CrossRefGoogle Scholar
  113. 113.
    Gu L, Huang W, Tang S, Tian S, Zhang X (2015) A novel deep eutectic solvent for biodiesel preparation using a homogeneous base catalyst. Chem Eng J 259:647–652CrossRefGoogle Scholar
  114. 114.
    Long T, Deng Y, Gan S, Chen J (2010) Application of choline chloride ZnCl2 ionic liquids for preparation of biodiesel. Chin J Chem Eng 18:322–327CrossRefGoogle Scholar
  115. 115.
    Sander A, Koscak MA, Kosir D, Milosavljevic N, Vukovic JP, Magic L (2017) The influence of animal fat type and purification conditions on biodiesel quality. Renew Energy 118:752–760CrossRefGoogle Scholar
  116. 116.
    Huang ZL, Wu BO, Wen Q, Yang TX, Yang Z (2014) Deep eutectic solvents can be viable enzyme activators and stabilizers. J Chem Technol Biotechnol 89:1975–1981CrossRefGoogle Scholar
  117. 117.
    Zhao H, Zhang C, Crittle TD (2013) Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J Mol Catal B Enzym 85–86:243–247CrossRefGoogle Scholar
  118. 118.
    Kleiner B, Fleischer P, Schorken U (2016) Biocatalytic synthesis of biodiesel utilizing deep eutectic solvents: a two-step-one-pot approach with free lipases suitable for acidic and used cooking oil. Proc Biochem 51:1808–1816CrossRefGoogle Scholar
  119. 119.
    Zhang Y, Xia X, Duan M, Han Y, Liu J, Luo M, Zhao C, Zu Y, Fu Y (2016) Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation. J Mol Catal B Enzym 123:35–40CrossRefGoogle Scholar
  120. 120.
    Lu W, Alam MA, Pan Y, Wu J, Wang Z, Yuan Z (2016) A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour Technol 218:123–128PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Pan Y, Alam MA, Wang Z, Huang D, Hu K, Chen H, Yuan Z (2017) One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresour Technol 238:157–163PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Zhao H, Baker GA (2012) Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Technol Biotechnol 88:3–12CrossRefGoogle Scholar
  123. 123.
    Troter DZ, Todorovic ZB, Dokic-Stojanovic DR, Stamenkovic OS, Veljkovic VB (2016) Application of ionic liquids and deep eutectic solvents in biodiesel production: a review. Renew Sustain Energy Rev 61:473–500CrossRefGoogle Scholar
  124. 124.
    Sebastian P, Botello LE, Valles E, Gomez E, Palomar-Pardave M, Scharifker BR, Mostany J (2016) Three dimensional nucleation with diffusion controlled growth: a comparative study of electrochemical phase formation from aqueous and deep eutectic solvents. J Electroanal Chem 793:119–125CrossRefGoogle Scholar
  125. 125.
    Abbott AP, Harris RC, Holyoak F, Frisch G. Hartley J, Jenkin GRT (2015) Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents. Green Chem 17:2172–2179CrossRefGoogle Scholar
  126. 126.
    Haerens K, Matthijs E, Chmielarz A, van der Bruggen B (2009) The use of ionic liquids based on choline chloride for metal deposition: a green alternative. J Environ Manage 90:3245–3252PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Pollet BG, Hihn JY, Mason TJ (2008) Sono-electrodeposition (20 and 850 kHz) of copper in aqueous and deep eutectic solvents. Electrochim Acta 53:4248–4256CrossRefGoogle Scholar
  128. 128.
    Hou Y, Li R, Liang J (2018) Superhydrophilic nickel-coated meshes with controllable pore size prepared by electrodeposition from deep eutectic solvent for efficient oil/water separation. Sep Purif Technol 192:21–29CrossRefGoogle Scholar
  129. 129.
    Renjith A, Roy A, Lakshminarayanan V (2014) In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents. J Colloid Interface Sci 426:270–279PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Rayee Q, Noneux T, Buess-Herman C (2017) Underpotential deposition of silver from deep eutectic electrolytes. Electrochim Acta 237:127–132CrossRefGoogle Scholar
  131. 131.
    Li A, Chen Y, Duan W, Wang C, Zhuo K (2017) Shape-controlled electrochemical synthesis of Au nanocrystals in reline: control conditions and electrocatalytic oxidation of ethylene glycol. RSC Adv 7:19694–19700CrossRefGoogle Scholar
  132. 132.
    Cojocaru P, Magagnin L, Gomez E, Valles E (2011) Using deep eutectic solvents to electrodeposit CoSm films and nanowires. Mater Lett 65:3597–3600CrossRefGoogle Scholar
  133. 133.
    Zhang J, Gu C, Tong Y, Wang X, Tu J (2015) Electrodeposition of superhydrophobic Cu film on active substrate from deep eutectic solvent. J Electrochem Soc 162:D313–D319CrossRefGoogle Scholar
  134. 134.
    Xie X, Zou X, Lu X, Xu Q, Lu C, Chen C, Zhou Z (2017) Electrodeposition behavior and characterization of copper/zinc alloy in deep eutectic solvent. J Appl Electrochem 47:679–689CrossRefGoogle Scholar
  135. 135.
    Cherigui EAM, Sentosun K, Bouckenooge P, Vanrompay H, Bals S, Terryn H, Ustarroz J (2017) Comprehensive study of the electrodeposition of nickel nanostructures from deep eutectic solvents: self-limiting growth by electrolysis of residual water. J Phys Chem B 121: 9337–9347Google Scholar
  136. 136.
    Hammons JA, Muselle T, Ustarroz J, Tzedaki M, Raes M, Hubin A, Terryn H (2013) Stability, assembly, and particle/solvent interactions of Pd nanoparticles electrodeposited from a deep eutectic solvent. J Phys Chem C 112:14381–14389CrossRefGoogle Scholar
  137. 137.
    Wei L, Fan YJ, Wang HH, Tian N, Zhou ZY, Sun SG (2012) Electrochemically shape-controlled synthesis in deep eutectic solvent of Pt nanoflowers with enhanced activity for ethanol oxidation. Electrochim Acta 76:468–474CrossRefGoogle Scholar
  138. 138.
    Wei L, Zhou ZY, Chen SP, Xu CD, Su D, Schuster ME, Sun SG (2013) Electrochemically shape-controlled synthesis in deep eutectic solvents: triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity. Chem Commun 49:11152–11154CrossRefGoogle Scholar
  139. 139.
    Yanai T, Siraishi K, Akiyoshi T, Azuma K, Watanabe Y, Ohgai T, Morimura T, Nakano M, Fukunaga H (2016) Electroplated Fe-Co-Ni films prepared from deep eutectic solvent based plating baths. Am Inst Phys Adv 6:055917/1–6CrossRefGoogle Scholar
  140. 140.
    Yanai T, Shiraishi K, Simokawa T, Watanabe Y, Ohgai T, Nakano M, Suzuki K, Fukunaga H (2014) Electroplated Fe films prepared from a deep eutectic solvent. J Appl Phys 115:17A344/1–3CrossRefGoogle Scholar
  141. 141.
    Gu C, Tu J (2011) One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent. Langmuir 27:10132–10140PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Ghosh S, Roy S (2014) Characterization of tin films synthesized from ethaline deep eutectic solvent. Mater Sci Eng, B 190:104–110CrossRefGoogle Scholar
  143. 143.
    Gomez E, Cojocaru P, Magagnin L, Valles E (2011) Electrodeposition of Co, Sm, and SmCo from a deep eutectic solvent. J Electroanal Chem 658:18–24CrossRefGoogle Scholar
  144. 144.
    Guillamat P, Cortes M, Valles E, Gomez E (2012) Electrodeposited CoPt films from a deep eutectic solvent. Surf Coat Technol 206:4439–4448CrossRefGoogle Scholar
  145. 145.
    Kumaraguru S, Pavilraj R, Vijayakumar J, Mohan S (2017) Electrodeposition of cobalt/silver multilayers from deep eutectic solvent and their giant magnetoresistance. J Alloys Comp 693:1143–1149CrossRefGoogle Scholar
  146. 146.
    Yanai T, Siraishi K, Watanabe Y, Ohgai T, Nakano M, Suzuki K, Fukunaga H (2015) Magnetic Fe-Co-Ni films electroplated in a deep eutectic solvent based plating bath. J Appl Phys 117:17A925/1–4CrossRefGoogle Scholar
  147. 147.
    Steichen M, Thomassey M, Siebentritt S, Dale PJ (2011) Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for a low cost fabrication of CuGaSe2 thin film solar cells. Phys Chem Chem Phys 13:4292–4302PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Niu G, Yang S, Li H, Yi J, Wang M, Lv X, Zhong H (2014) Electrodeposition of Cu-Ga precursor layer from deep eutectic solvent for CuGaS2 solar energy thin film. J Electrochem Soc 161:D333–D338CrossRefGoogle Scholar
  149. 149.
    Cao Z, Yang S, Wang M, Huang X, Li H, Yi J, Zhong J (2016) Cu(InGa)S2-absorber layer prepared for thin film solar cell by electrodeposition of Cu-Ga precursor from deep eutectic solvent. Sol Energy 139:29–35CrossRefGoogle Scholar
  150. 150.
    Malaquias J, Regesch D, Dale PJ, Steichen M (2014) Tuning the gallium content of metal precursors for Cu(In, Gas)Se2 thin film solar cells by electrodeposition from a deep eutectic solvent. Phys Chem Chem Phys 16:2361–2367CrossRefGoogle Scholar
  151. 151.
    Chen H, Ye Q, He X, Ding J, Zhang Y, Han J, Liu J, Liao C, Mei J, Lau W (2014) Electrodeposited CZST solar cells from Reline electrolyte. Green Chem 16:3841–3845CrossRefGoogle Scholar
  152. 152.
    Abbott AP, El Ttaib K, Frisch G, McKenzie KJ, Ryder KS (2009) Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys Chem Chem Phys 11:4269–4277PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Abbott AP, El Ttaib K, Frisch G, Ryder KS, Weston D (2012) The electrodeposition of silver composites using deep eutectic solvents. Phys Chem Chem Phys 14:2446–2449CrossRefGoogle Scholar
  154. 154.
    Li R, Hou Y, Liang J (2016) Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved resistance. Appl Surf Sci 367:449–458CrossRefGoogle Scholar
  155. 155.
    Liao YS, Chen PY, Sun IW (2016) Electrochemical study and recovery of Pb using 1:2 choline chloride/urea deep eutectic solvent: a variety of Pb species PbSO4, PbO2, and PbO exhibits the analogous thermodynamic behavior. Electrochim Acta 214:265–275CrossRefGoogle Scholar
  156. 156.
    Pereira NM, Salome S, Pereira CM, Silva AF (2012) Zn-Sn electrodeposition from deep eutectic solvents containing EDTA, HEDTA, and Idranal VII. J Appl Electrochem 42:561–571CrossRefGoogle Scholar
  157. 157.
    Pereira NM, Pereira CM, Silva AF (2012) The effect of complex agents on the electrodeposition of tin from deep eutectic solvents. ECS Electrochem Lett 1:D5–D7CrossRefGoogle Scholar
  158. 158.
    Pereira NM, Fernandes PMV, Pereira CM, Silva AF (2012) Electrodeposition of zinc from choline chloride-ethylene glycol deep eutectic solvent: effect of tartrate ion. J Electrochem Soc 159:D501–D506CrossRefGoogle Scholar
  159. 159.
    Song Y, Tang J, Hu J, Yang H, Gi W, Fu Y, Ji X (2017) Interfacial assistant role of amine additives on zinc electrodeposition from deep eutectic solvents: an in situ X-ray imaging investigation. Electrochim Acta 240:90–97CrossRefGoogle Scholar
  160. 160.
    Fashu S, Gu C, Zhang J, Huang M, Wang X, Tu J (2015) Effect of EDTA and NH-4Cl additives on electrodeposition of Zn-Ni from choline chloride-based ionic liquid. Trans Nonferrous Met Soc China 25:2054–2064CrossRefGoogle Scholar
  161. 161.
    Fashu S, Gu CD, Zhang JL, Zheng JL, Wang XL, Tu JP (2015) Electrodeposition, morphology, composition, and corrosion performance of Zn-Mn coatings from a deep eutectic solvent. J Mater Eng Perform 24:434–444CrossRefGoogle Scholar
  162. 162.
    Sakita AM, Della Noce R, Fugivara CS, Benedetti AV (2016) On the cobalt and cobalt oxide electrodeposition from a glyceline deep eutectic solvent. Phys Chem Chem Phys 18:25048–25057PubMedCrossRefGoogle Scholar
  163. 163.
    Salome S, Pereira NM, Ferreira ES, Pereira CM, Silva AF (2013) Tin electrodeposition from choline chloride based solvent: influence of the hydrogen bond donors. J Electroanal Chem 703:80–87CrossRefGoogle Scholar
  164. 164.
    Popescu AMJ, Constantin V, Olteanu M, Demidenko O, Yanushkevich K (2011) Obtaining and structural characterization of the electrodeposited metallic copper from ionic liquids. Rev Chim (Bucharest) 62:626–632Google Scholar
  165. 165.
    Abbott AP, Capper G, Davies DL, Rasheed RK (2004) Ionic liquid analogues formed from hydrated metal salts. Chem Eur J 10:3769–3774PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Wright AC, Faulkner MK, Harris RC, Goddard A, Abbott AP (2012) Nanomagnetic domains of chromium deposited on vertically-aligned carbon nanotubes. J Magn Magn Mater 324:4170–4174CrossRefGoogle Scholar
  167. 167.
    De Vreese P, Skoczylas A, Matthijs E, Fransaer J, Binnemans K (2013) Electrodeposition of copper-zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochim Acta 108:788–794CrossRefGoogle Scholar
  168. 168.
    Bernasconi R, Zebarjadi M, Magagnin L (2015) Copper electrodeposition from a chloride deep eutectic solvent. J Electroanal Chem 758:163–169CrossRefGoogle Scholar
  169. 169.
    Abbott AP, Capper G, Swain BG, Wheeler DA (2005) Electropolishing of stainless steel in an ionic liquid. Trans Inst Metal Finish 83:51–54CrossRefGoogle Scholar
  170. 170.
    Abbott AP, Capper G, McKenzie KJ, Glidle A, Ryder KS (2006) Electropolishing of stainless steels in a choline chloride based ionic liquid and electrochemical study with surface characterization using SEM and atomic force microscopy. Phys Chem Chem Phys 8:4214–4221PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Abbott AP, Capper G, McKenzie KJ, Ryder KS (2006) Volumetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochim Acta 51:4420–4425CrossRefGoogle Scholar
  172. 172.
    Alrbaey K, Wimpenny DJ, Al-Barzinji AA, Moroz A (2016) Electropolishing of re-melted SLM stainless steel 316L parts using deep eutectic solvents: 3 × 3 full factorial design. J Mater Eng Perform 25:2836–2846CrossRefGoogle Scholar
  173. 173.
    Ali MR, Rahman MZ, Saha SS (2014) Electroless and electrolytic deposition of nickel from deep eutectic solvents based on choline chloride. Indian J Chem Technol 21:127–133Google Scholar
  174. 174.
    Wixtrom AI, Buhler JE, Reece CE, Abdel-Fattah TM (2013) Electrochemical polishing applications and EIS of a vitamin B4-based ionic liquid. J Electrochem Soc 160:E22–E26CrossRefGoogle Scholar
  175. 175.
    Abbott AP, Barron JC, Frisch G, Gurman S, Ryder KS, Silva AF (2011) The effects of additives on zinc electrodeposition from deep eutectic solvents. Electrochim Acta 56:5272–5279CrossRefGoogle Scholar
  176. 176.
    Abbott AP, Ballantyne A, Harris RC, Juma JA, Ryder KS (2017) Bright metal coatings from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent. Phys Chem Chem Phys 19:3219–3231PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Goddard AJ, Harris RC, Saleem S, Azam M, Hood C, Clark D, Satchwell J, Ryder KS (2017) Electropolishing and electrolytic etching of Ni-based HIP consolidated aerospace forms: a comparison between deep eutectic solvents and aqueous electrolytes. Trans IMF 95:137–146CrossRefGoogle Scholar
  178. 178.
    Yang C, Zhang QB, Abbott AP (2016) Facile fabrication of nickel nanostructures on a copper-based template via a galvanic replacement reaction in a deep eutectic solvent. Electrochem Commun 70:60–64CrossRefGoogle Scholar
  179. 179.
    Abbott AP, Nandhara S, Postlethwaite S, Smith EL, Ryder KS (2007) Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM, and atomic force microscopy. Phys Chem Chem Phys 9:3735–3743PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Abbott AP, Griffith J, Nandhara S, O’Connor C, Postlethwaite S, Ryder KS, Smith EL (2008) Sustained electroless deposition of metallic silver from a choline chloride-based ionic liquid. Surf Coat Technol 202:2033–2039CrossRefGoogle Scholar
  181. 181.
    Ballantyne AD, Forrest GCH, Frisch G, Hartley JM, Ryder KS (2015) Electrochemistry and speciation of Au+ in a deep eutectic solvent: growth and morphology of galvanic immersion coatings. Phys Chem Chem Phys 17:30540–30550PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Kang R, Liang J, Qiao Z, Peng Z (2015) Growth kinetics of copper replacement deposition on Al and Al-Si from a deep eutectic solvent. J Electrochem Soc 162:D515–D519CrossRefGoogle Scholar
  183. 183.
    Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8:4265–4279PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Abbott AP, Ryder KS, Konig U (2008) Electrofinishing of metals using eutectic based ionic liquids. Trans Inst Metal Finish 86:196–204CrossRefGoogle Scholar
  185. 185.
    Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DES) and their applications. Chem Rev 114:11060–11082CrossRefGoogle Scholar
  186. 186.
    Haerens K, Matthijs E, Binnemans K, van der Bruggen B (2009) Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chem 11:1357–1365CrossRefGoogle Scholar
  187. 187.
    Hammons JA, Ustarroz J, Muselle T, Torriero AAJ, Terryn H, Suthasr K, Ilavsky J (2016) Supported silver nanoparticle and near-interface solution dynamics in a deep eutectic solvent. J Phys Chem C 120:1534–1545CrossRefGoogle Scholar
  188. 188.
    Oseguera-Galindo DO, Machorro-Mejia R, Bogdanchikova N, Mota-Morales JD (2016) Silver nanoparticles synthesized by laser ablation confined in urea choline chloride deep eutectic solvent. Colloid Interface Sci Commun 12:1–4CrossRefGoogle Scholar
  189. 189.
    Liao HG, Jiang YX, Zhou ZY, Chen SP, Sun SG (2008) Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew Chem Int Ed 47:9100–9103CrossRefGoogle Scholar
  190. 190.
    O’Neill M, Raghuwanshi VS, Wendt R, Wollgarten M, Hoell A, Rademann K (2015) Gold nanoparticles in novel green deep eutectic solvents: self-limited growth, self-assembly & catalytic implications. Z Phys Chem (Munich) 229:221–234Google Scholar
  191. 191.
    Raghuwanshi VS, Ochmann M, Hoell A, Polzer F, Rademann K (2014) Deep eutectic solvents for self-assembly of gold nanoparticles: a SAXS, UV-Vis, and TEM investigation. Langmuir 30:6038–6046PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Raghuwanshi VS, Ochmann M, Hoell A, Polzer F, Rademann K (2014) Self-assembly of gold nanoparticles on deep eutectic solvent DES surfaces. Chem Commun 50:8696CrossRefGoogle Scholar
  193. 193.
    Wei L, Sheng T, Ye JT, Lu BA, Tian N, Zhou ZY, Zhao XS, Sun SG (2017) Seeds and potentials mediated synthesis of high-index facetted gold nanocrystals with enhanced electrocatalytic activities. Langmuir 33:6991–6998PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Tohidi M, Mahyari FA, Safavi A (2015) A seed-less method for synthesis of ultrathin gold nanosheets by using a deep eutectic solvent and gum Arabic and their electrocatalytic application. RSC Adv 5:32744–32754CrossRefGoogle Scholar
  195. 195.
    Shahidi S, Iranpour S, Iranpour P, Alavi AA, Mahyari FA, Tohidi M, Safavi A (2015) A new X-ray contrast agent based on highly stable gum arabic-gold nanoparticles synthesized in deep eutectic solve. J Exp Nanosci 10:911–914CrossRefGoogle Scholar
  196. 196.
    Kumar-Krishnan S, Guadalupe-Ferreira Garcia M, Prokhorov E, Estevez-Gonzalez M, Perez R, Esparza M, Mettappan M (2017) Synthesis of gold nanoparticles supported on functionalized nanosilica using deep eutectic solvents for an electrochemical enzymatic glucose biosensor. J Mater Chem B 5:7072–7081CrossRefGoogle Scholar
  197. 197.
    Renjith A, Lakshminarayanan V (2015) One step preparation of ‘ready to use’ Au@Pd nanoparticles modified surface using deep eutectic solvents and a study of its electrocatalytic properties in methanol oxidation reaction. J Mater Chem A 3:3019–3028CrossRefGoogle Scholar
  198. 198.
    Zhang JM, Sun SN, Li Y, Zhang XJ, Zhang PY, Fan YJ (2017) A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocrystallites with enhanced performance towards methanol electrooxidation. Int J Hydrogen Energy 42:26744–26751CrossRefGoogle Scholar
  199. 199.
    Wei L, Liu K, Mao YJ, Sheng T, Wei YS, Li JW, Zhao XS, Zhu FC, Xu BB, Sun SG (2017) Urea hydrogen bond donor-mediated synthesis of high-index facetted platinum concave nanocubes and their enhanced electrocatalytic activity. Phys Chem Chem Phys 19:31553–31559PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Gao MY, Yang C, Zhang QB, Zeng JR, Li XT, Hua YX, Xu CY, Dong P (2017) Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. J Mater Chem A 5:5797–5805CrossRefGoogle Scholar
  201. 201.
    Li X, Choi J, Ahn WS, Row KH (2018) Preparation and application of porous materials based on deep eutectic solvents. Crit Rev Anal Chem 48:73–85PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Tang B, Row KH (2015) Exploration of deep eutectic solvent based mesoporous silica spheres as high performance size exclusion chromatography packing materials. J Appl Polym Sci 132:42203/1–6CrossRefGoogle Scholar
  203. 203.
    Chen CY, Ozasa K, Kitamura F, Katsumata KI, Maeda M, Okada K, Matsushita N (2015) Self-organization of TiO2 nanobamboos by anodization with deep eutetctic solvent. Electrochim Acta 153:409–415CrossRefGoogle Scholar
  204. 204.
    Anicai L, Petica A, Patroi D, Marinescu V, Prioteasa P, Costovici S (2015) Electrochemical synthesis of nanosized TiO2 nanopowder involving choline chloride based ionic liquids. Mater Sci Eng, B 199:87–95CrossRefGoogle Scholar
  205. 205.
    Kaur N, Singh V (2017) Current status and future challenges in ionic liquids, functionalized ionic liquids and deep eutectic solvent-mediated synthesis of nanostructured TiO2: a review. New J Chem 41:2844–2868CrossRefGoogle Scholar
  206. 206.
    Karimi M, Eshragi MI (2017) One-pot and green synthesis of Mn3O4 nanoparticles using an all-in-one system (solvent, reactant, template) based on ethaline deep eutectic solvent. J Alloys Comp 696:171–176CrossRefGoogle Scholar
  207. 207.
    Thorat GM, Jadhav HS, Chung WJ, Seo JG (2017) Collective use of deep eutectic solvent for one-pot synthesis of ternary Sn/SnO2-@C electrode for supercapacitor. J Alloys Comp 732:694–704CrossRefGoogle Scholar
  208. 208.
    Chen F, Xie S, Zhang J, Liu R (2013) Synthesis of spherical Fe3O4 magnetic nanoparticles by co-precipitation in choline chloride/urea deep eutectic solvent. Mater Lett 112:177–179CrossRefGoogle Scholar
  209. 209.
    Karimi M, Shabani AMH, Dadfarnia S (2016) Deep eutectic solvent-mediated extraction for ligand-less preconcentration of lead and cadmium from environmental samples using magnetic nanoparticles. Microchim Acta 183:563–571CrossRefGoogle Scholar
  210. 210.
    Chen F, Xie S, Huang X, Qiu X (2017) Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalyst for degradation of organic pollutants with H2O2. J Hazard Mater 322:152–162PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Tavakol H, Keshavarzipour F (2017) Preparation of choline chloride-urea deep eutectic solvent-modified magnetic nanoparticles for synthesis of various 2-amino-4H-pyran derivatives in water solution. Appl Organomet Chem 31:e3811/1–11CrossRefGoogle Scholar
  212. 212.
    Qu Q, Tang W, Tang B, Zhu T (2017) Highly selective purification of ferulic acid from wheat bran using deep eutectic solvents modified magnetic nanoparticles. Sep Sci Technol 52:1022–1030CrossRefGoogle Scholar
  213. 213.
    Maleki A, Aghaie M (2017) Ultrasonic-assisted environmentally-friendly synergetic synthesis of nitroaromatic compounds in core/shell nanoreactor: a green protocol. Ultrason Sonochem 39:534–539PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Ge X, Gu CD, Wang XL, Tu JP (2015) Spinel type CoFe oxide porous nanosheets as magnetic adsorbents with fast removal ability and facile preparation. J Colloid Inteface Sci 454:134–143CrossRefGoogle Scholar
  215. 215.
    Söldner A, Zach J, Iwanow M, Gärtner T, Schlosser M, Pfitzner A, König B (2016) Preparation of magnesium, cobalt, and nickel ferrite nanoparticles from metal oxides using deep eutectic solvents. Chem Eur J 22:13108–13113PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Xiong QQ, Tu JP, Ge X, Wang XL, Gu CD (2015) One-step synthesis of hematite nanospindles from choline chloride/urea deep eutectic solvent with highly powerful storage versus lithium. J Power Sour 274:1–7CrossRefGoogle Scholar
  217. 217.
    Hammond OS, Eslava S, Smith AJ, Zhang J, Edler KJ (2017) Microwave-assisted deep eutectic-solvothermal preparation of iron oxide nanoparticles for photoelectrochemical solar water splitting. J Mater Chem A 5:16189–16199CrossRefGoogle Scholar
  218. 218.
    Cai GF, Tu JP, Gu CD, Zhang JH, Chen J, Zhou D, Shi SJ, Wang XL (2013) One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance. J Mater Chem A 1:4286–4292CrossRefGoogle Scholar
  219. 219.
    Thorat GM, Jadhav AH, Jadhav HS, Lee K, Seo JG (2016) Template-free synthesis and characterization of nickel oxide nanocrystal with high-energy facets in deep eutectic solvent. J Nanosci Nanotechnol 16:11009–11013CrossRefGoogle Scholar
  220. 220.
    Gu CD, Huang ML, Ge X, Zhang H, Wang XL, Tu JP (2014) NiO electrode for methanol electro-oxidation: mesoporous vs. nanoparticulate. Int J Hydrogen Energy 39:10892–10901CrossRefGoogle Scholar
  221. 221.
    Dong JY, Hsu YJ, Wong DSH, Lu SH (2010) Growth of ZnO nanostructures with controlled morphology using a facile green antisolvent method. J Phys Chem C 114:8867–8872CrossRefGoogle Scholar
  222. 222.
    Dong JY, Lin CH, Hsu YJ, Lu SH, Wong DSH (2012) Single-crystalline mesoporous ZnO nanosheets prepared with green antisolvent method exhibited excellent photocatalytic efficiencies. CrystEngComm 14:4732–4737CrossRefGoogle Scholar
  223. 223.
    Lu YH, Lin WH, Yang CY, Chiu YH, Pu YC, Lee MH, Tseng YC, Hsu YJ (2014) A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities. Nanoscale 6:8796–8803PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Cun T, Dong C, Huang Q (2016) Ionothermal precipitation of highly dispersive ZnO nanoparticles with improved photocatalytic performance. Appl Surf Sci 384:73–82CrossRefGoogle Scholar
  225. 225.
    Gu CD, Mai YJ, Zhou JP, Tu JP (2011) SnO2 nanocrystallite: novel synthetic route from deep eutectic solvent and lithium storage performance. Funct Mater Lett 4:377–381CrossRefGoogle Scholar
  226. 226.
    Gu CD, Zheng H, Wang XL, Tu JP (2015) Superior ethanol-sensing behavior based on SnO2 mesocrystals incorporating orthorhombic and tetragonal phases. RSC Adv 5:9143–9153CrossRefGoogle Scholar
  227. 227.
    Hammond OS, Edler KJ, Bowron DT, Torrente-Murciano L (2017) Deep eutectic solvothermal synthesis of nanostructured ceria. Nat Commun 8:14153/1–7PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Huang Y, Shen F, La J, Luo G, Lai J, Liu C, Chu G (2013) Synthesis and characterization of CuCl nanoparticles in deep eutectic solvents. Part Sci Technol 31:81–84CrossRefGoogle Scholar
  229. 229.
    Zhang H, Lu Y, Gu CD, Wang XL, Tu JP (2012) Ionothermal synthesis and lithium storage performance of core/shell structured amorphous crystalline Ni-P nanoparticles. CrystEngComm 14:7942–7950CrossRefGoogle Scholar
  230. 230.
    Ferreira VC, Neves MC, Hillman AB, Monteiro OC (2016) Novel one-pot synthesis and sensitization of new BiOCl-Bi2S3 nanostructures from DES medium displaying high photocatalytic activity. RSC Adv 6:77329–77339CrossRefGoogle Scholar
  231. 231.
    Yang C, Gao MY, Zhang QR, Zeng JR, Li XT, Abbott AR (2017) In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy 36:85–94CrossRefGoogle Scholar
  232. 232.
    Zhang J, Chen J, Li Q (2015) Microwave heating synthesis and formation mechanism of chalcopyrite structured CuInS2 nanorods in deep eutectic solvent. Mater Res Bull 63:88–92CrossRefGoogle Scholar
  233. 233.
    Karimi M, Eshraghi MJ, Jahangiri V (2016) A facile and green synthetic approach based on deep eutectic solvents towards synthesis of CZTS nanoparticles. Mater Lett 171:100–103CrossRefGoogle Scholar
  234. 234.
    Jiang J, Yan C, Zhao X, Luo H, Xue Z, Mu T (2017) A PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo2S4 for efficient oxygen evolution reaction. Green Chem 19:3023–3031CrossRefGoogle Scholar
  235. 235.
    Zhang Z, Jiang X, Hu J, Yue C, Zhang J (2017) Controlled synthesis of mesoporous nitrogen-doped carbon supported Ni-Mo sulfides for hydrodesulfurization of dibenzenethiophene. Catal Lett 147:2515–2522CrossRefGoogle Scholar
  236. 236.
    Querejeta-Fernandez A, Hernandez-Garrido JC, Yang H, Zhou Y, Varela MP, Calvino-Gamez JJ, Gonzalez-Calbert JM, Green PF, Kotov NA (2012) Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano 6:3800–3812PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Chen J, Zhang J, Xu H, Ouyang Y, Zhan F, Li Q (2015) Fabrication of PbS thin films composed of highly (200)-oriented nano/microrods in deep eutectic solvent. Phys E 72:48–52CrossRefGoogle Scholar
  238. 238.
    Zhang T, Doert T, Ruck M (2017) Synthesis of metal sulfides from a deep eutectic solvent precursor (DESP). Z Anorg Allg Chem 243:1913–1919CrossRefGoogle Scholar
  239. 239.
    Karimi M, Ransheh MR, Ahmadi SM, Medani MR (2017) One-step and low temperature synthesis of monetite nanoparticles in an all-in-one system (reactant, solvent, and template) based on calcium chloride-choline chloride deep eutectic solvent. Ceram Int 43:2046–2050CrossRefGoogle Scholar
  240. 240.
    Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A (2016) Synthesis of calcium phosphate nano-particles on deep eutectic choline chloride-urea medium: investigating the role of synthesis temperature on phase characteristics and physical properties. Ceram Int 42:2780–2788CrossRefGoogle Scholar
  241. 241.
    Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A (2016) A facile and sustainable method based on deep eutectic solvents toward synthesis of amorphous calcium phosphate nanoparticles: the effect of using various solvents and precursors on physical characteristics. J Non-Cryst Solids 443:59–64CrossRefGoogle Scholar
  242. 242.
    Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A (2017) Time and temperature mediated evolution of CDHA from ACP nanoparticles in deep eutectic solvents: kinetic and thermodynamic considerations. Mater Design 122:1–10CrossRefGoogle Scholar
  243. 243.
    Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Sadasivuni KK, Kumar SS (2017) The synthesis, characterization and in vivo study of mineral substituted hydroxyapatite for prospective bone tissue rejuvenation applications. Nanomedicine Nanotechnol Biol Med 13:2661–2669CrossRefGoogle Scholar
  244. 244.
    Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A (2016) One-pot sustainable synthesis of nanocrystalline hydroxyapatite powders using deep eutectic solvents. Mater Lett 175:89–92CrossRefGoogle Scholar
  245. 245.
    Karimi M, Ransheh MR, Ahmadi SM, Medani MR, Shamsi M, Reshadi R, Lotfi F (2017) Reline-assisted green and facile synthesis of fluorapatite nanoparticles. Mater Sci Eng, C 77:121–128CrossRefGoogle Scholar
  246. 246.
    Karimi M, Jodaei A, Sadeghinik A, Ransheh MR, Hafshejani TM, Shamsi M, Orand F, Lotfi F (2017) Deep eutectic choline chloride-calcium chloride as all-in-one system for sustainable and one-step synthesis of bioactive fluorapatite nanoparticles. J Fluorine Chem 204:76–83CrossRefGoogle Scholar
  247. 247.
    Wu Z, Long YF, Lv XP, Su J, Wen YX (2017) Microwave heating synthesis of spindle-like LiMnPO4/C in a deep eutectic solvent. Ceram Int 43:6089–6095CrossRefGoogle Scholar
  248. 248.
    Wu Z, Huang RR, Yu H, Xie YC, Lv XP, Su J, Long YF, Wen YX (2017) Deep eutectic solvent synthesis of LiMnPO4/C nanorods as a cathode material for lithium ion batteries. Mater 10:134/1–16CrossRefGoogle Scholar
  249. 249.
    Boston R, Foeller PY, Sinclair DC, Reaney IM (2017) Synthesis of barium titanate using deep eutectic solvents. Inorg Chem 56:542–547PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Liu W, Yu Y, Cao L, Su G, Liu X, Zhang L, Wang Y (2010) Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation. J Hazard Mater 181:1102–1108PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Sheng Q, Liu R, Zheng J (2012) Prussian blue nanospheres synthesized in deep eutectic solvents. Nanoscale 4:6880–6886PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Hosa O, Barsan MM, Cristea C, Sandulescu R, Brett CMA (2017) Nanostructured electropolymerized poly(methylene blue) films from deep eutectic solvents. Optimization and characterization. Electrochim Acta 232:285–295CrossRefGoogle Scholar
  253. 253.
    Gutierrez MC, Rubio F, del Monte F (2010) Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbon and carbon-carbon nanotube composites. Chem Mater 22:2711–2719CrossRefGoogle Scholar
  254. 254.
    Gutierrez MC, Carriazo D, Tamayo A, Jimenez R, Pico F, Rojo JM, Ferrer ML, del Monte F (2011) Deep eutectic solvent assisted synthesis of hierarchical carbon electrodes exhibiting capacitance retention at high current densities. Chem Eur J 17:10533–10537PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Mota-Morales JD, Gutierrez MC, Ferrer ML, Jimenez R, Santiago P, Sanchez IC, Terrones M, del Monte F, Luna-Bercanas G (2013) Synthesis of macroporous poly(acrylic acid)-carbon nanotube composites by frontal polymerization in deep eutectic solvents. J Mater Chem A 1:3970–3976CrossRefGoogle Scholar
  256. 256.
    Martis P, Dilimon VS, Delhalle J, Mekhalif Z (2010) Electro-generated nickel/carbon nanotube composites in ionic liquid. Electrochim Acta 55:5407–5410CrossRefGoogle Scholar
  257. 257.
    AlOmar MK, Alsaadi MA, Hayyan M, Akib S, Hashim MA (2016) Functionalization of CNTs surface with phosphonium based deep eutectic solvents for arsenic removal from water. Appl Surf Sci 389:216–226CrossRefGoogle Scholar
  258. 258.
    AlOmar MK, Alsaadi MA, Jassam TM, Akib S, Hashim MA (2017) Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. J Colloid Interface Sci 497:413–421PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Zarei AR, Nedaei M, Ghorbanian SA (2017) Deep eutectic solvent based magnetic nanofluid in the development of stir bar sorptive dispersion microextraction: an efficient hyphenated sample preparation for ultra-trace nitroaromatic explosives extraction in wastewater. J Sep Sci 40:1–9CrossRefGoogle Scholar
  260. 260.
    Yousefi SM, Shemirani F, Ghorbanian SA (2017) Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: application for ultratrace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique. Talanta 168:73–81PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Liu DG, Sun J, Gui ZX, Song KJ, Luo LM, Wu YC (2017) Super-low friction nickel based carbon nanotube composite coating electro-deposited from eutectic solvents. Diam Relat Mater 74:229–232CrossRefGoogle Scholar
  262. 262.
    Wang RX, Fan DJ, Liang ZR, Zhang JM, Zhou ZY, Sun SG (2016) PdSn nanocatalysts supported in carbon nanotubes synthesized in deep eutectic solvents with high activity for formic acid electrooxidation. RSC Adv 6:60400–60406CrossRefGoogle Scholar
  263. 263.
    AlOmar MK, Alsaadi MA, Hayyan M, Akib S, Ibrahim M, Hashim MA (2017) Allyl-triphenylphosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water. Chemosphere 167:44–52PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Hosu O, Barsan MM, Cristea C, Sandulescu R, Brett CMA (2017) Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform. Microchim Acta 184:3919–3927CrossRefGoogle Scholar
  265. 265.
    Atilhan M, Costa LT, Aparicio S (2017) Elucidating the properties of graphene-deep eutectic solvents interface. Langmuir 33:5154–5165PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Hayyan M, Abo-Hamas A, AlSaadi MA, Hashim MA (2015) Functionalization of graphene using deep eutectic solvents. Nano Res Lett 10:324–350CrossRefGoogle Scholar
  267. 267.
    Xu K, wang Y, Ding X, Huang Y, Li Na, Wen Q (2016) Magnetic solid phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles. Talanta 148:153–162PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Pethsangave DA, Khose RV, Wadekar PH, Some S (2017) Deep eutectic solvent functionalized graphene composite as an extremely high potency flame retardant. ACS Appl Mater Interf 9:35319–35324CrossRefGoogle Scholar
  269. 269.
    Lamei N, Ezoddin M, Ardestani MS, Abdi K (2017) Dispersion of magnetic graphene oxide nanoparticles coated with a deep eutectic solvent using ultrasound assistance for preconcentration of methadone in biological and water samples followed by GC-FID and GC-MS. Anal Bioanal Chem 409:6113–6121PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Mondal D, Sharma M, Wang CH, Yc Lin, Huang HC, Saha A, Nataraj SK, Prasad K (2016) Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst. Green Chem 18:2819–2826CrossRefGoogle Scholar
  271. 271.
    Sharma M, Mondal D, Singh N, Upadhyay K, Rawat A, Devkar RV, Sequera RA, Prasad L (2017) Seaweed-derived nontoxic functionalized graphene sheets as sustainable materials for the efficient removal of fluoride from high fluoride containing drinking water. ACS Sustain Chem Eng 5:3488–3498CrossRefGoogle Scholar
  272. 272.
    Fang YK, Osama M, Rashmi W, Shahbaz K, Khalid M, Mjalli FS, Farid MM (2016) Synthesis and thermos-physical properties of deep eutectic solvent-based graphene nanofluids. Nanotechnology 27:075702/1–10PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Azizi M, Edrisi M (2017) Deep eutectic solvent immobilized on SBA-15 as a novel separable catalyst for one-pot three-component Mannich reaction. Microporous Mesoporous Mater 240:130–136CrossRefGoogle Scholar
  274. 274.
    Azizi M, Edrisi M, Abbasi F (2018) Mesoporous silica SBA-15 functionalized with acidic deep eutectic solvent: a highly active heterogeneous N-formylation catalyst under solvent-free conditions. Appl Organometal Chem 32:e3901/1–10CrossRefGoogle Scholar
  275. 275.
    Papadopoulou AA, Tzani A, Polydera AC, Katapodis P, Voutsas E, Detsi A, Stamatis H (2018) Green biotransformations catalysed by enzyme-inorganic hybrid nanoflowers in environmentally friendly ionic solvents. Environ Sci Polut Res 25:26707–26714PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Fernandes P, Campina J, Pereira N, Pereira C, Silva F (2012) Biodegradable deep eutectic mixtures as electrolytes for the electrochemical synthesis of conducting polymers. J Appl Electrochem 42:997–1003CrossRefGoogle Scholar
  277. 277.
    Fernandes P, Campina J, Pereira CM, Silva F (2012) Electrosynthesis of polyaniline from choline-based deep eutectic solvents: morphology, stability, and electrochromism. J Electrochem Soc 159:G97–G105CrossRefGoogle Scholar
  278. 278.
    Prathish KP, Carvalho RC, Brett CMA (2016) Electrochemical characterization of poly(3,4-ethylenedioxythiophene) film modified glassy carbon electrodes prepared in deep eutectic solvents for simultaneous sensing of biomarkers. Electrochim Acta 187:704–713CrossRefGoogle Scholar
  279. 279.
    Nardecchia S, Gutierrez MC, Ferrer ML, Alonso M, Lopez IM, Rodriguez-Cabello JC, del Monte S (2012) Phase behavior of elastin-like synthetic recombinamers in deep eutectic solvents. Biomacromol 13:2029–2036CrossRefGoogle Scholar
  280. 280.
    Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as pre-treatment for nanofibrillation of wood cellulose. Green Chem 17:3401–3406CrossRefGoogle Scholar
  281. 281.
    Suopajärvi Y, Sirviö JA, Liimatainen H (2017) Nanofibrillation of deep eutectic solvent treated paper and board. Carbohydr Polym 169:167–175PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Li P, Sirviö JA, Haapala A, Liimatainen H (2017) Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl Mater Interf 9:2846–2855CrossRefGoogle Scholar
  283. 283.
    Laitinen O, Suopajarvi T, Osterberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated silylated cellulose nanofibrils for selective oil removal. ACS App Mater Interf 9:25029–25037CrossRefGoogle Scholar
  284. 284.
    Sousa AMM, Souza HKS, Uknalis J, Liu SC, Gonçalves MP, Liu LS (2015) Improving agar electrospinnabilitty with choline-based deep eutectic solvents. Int J Biol Macromol 80:139–148PubMedCrossRefGoogle Scholar
  285. 285.
    Sirviö JA, Visanko M (2017) Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification. J Mater Chem A 5:21828–21835CrossRefGoogle Scholar
  286. 286.
    Mukesh C, Mondal D, Sharma M, Prasad K (2014) Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydr Polym 103:466–471PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Silva NHCS, Pinto RJB, Freire CSR, Mazrrucho IM (2016) Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions. Coll Surf B: Biointerf 147:36–44CrossRefGoogle Scholar
  288. 288.
    Rajagopal SK, Hariharan M (2014) Non-natural G-quadruplex in a non-natural environment. Photochem Photobiol Sci 13:152–161CrossRefGoogle Scholar
  289. 289.
    Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631CrossRefGoogle Scholar
  290. 290.
    Laitinen Q, Ojala J, Sirvio JA, Liimatainen H (2017) Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose 24:1679–1689CrossRefGoogle Scholar
  291. 291.
    Fischer V, Marcus J, Touraud D, Diat O, Kunz W (2015) Towards surfactant-free and water-free microemulsions. J Coll Interf Sci 453:186–193CrossRefGoogle Scholar
  292. 292.
    Bryant SJ, Atkin R, Warr GG (2017) Effect of deep eutectic solvent nanostructure on phospholipid bilayer phases. Langmuir 33:6878–6884PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Wagle DV, Zhao H, Baker GA (2014) Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res 47:2299–2308PubMedCrossRefPubMedCentralGoogle Scholar
  294. 294.
    Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567CrossRefGoogle Scholar
  295. 295.
    Yonemoto BT, Lin Z, Jiao F (2012) A general synthetic method for MPO4 (M = Co, Fe, Mn) frameworks using deep eutectic solvents. Chem Commun 48:9132–9134CrossRefGoogle Scholar
  296. 296.
    Ge X, Gu CD, Wang XL, Tu JP (2013) A versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid. J Mater Chem A 1:13454–13461CrossRefGoogle Scholar
  297. 297.
    Sebastian P, Valles E, Gomez E (2014) Copper electrodeposition in a deep eutectic solvent. First stages analysis considering Cu(I) stabilization in chloride media. Electrochim Acta 123:285–295CrossRefGoogle Scholar
  298. 298.
    Gu T, Zhang M, Chen J, Qio H (2015) A novel green approach for the chemical modification of silica particles based on deep eutectic solvents. Chem Commun 51:9825–9828CrossRefGoogle Scholar
  299. 299.
    Chen F, Xie S, Huang X, Qiu X (2017) Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. Hazard Mater 322:152–162CrossRefGoogle Scholar
  300. 300.
    Gao Z, Xie S, Zhang B, Qiu X, Chen F (2017) Ultrathin Mg-Al layered double hydroxide prepared by ionothermal synthesis in a deep eutectic solvent for highly effective boron removal. Chem Eng J 319:108–119CrossRefGoogle Scholar
  301. 301.
    Zhang H, Lu Y, Gu CD, Wang XL, Tu JP (2012) Ionothermal synthesis and lithium storage performance of core/shell structured amorphous@crystalline Ni-P nanoparticles. CrystEngComm 14:7942–7950CrossRefGoogle Scholar
  302. 302.
    You Y, Gu C, Wang X, Tu J (2012) Electrochemical synthesis and characterization of Ni-P alloy coatings from eutectic-based ionic liquid. J Electrochem Soc 159:D642–D648CrossRefGoogle Scholar
  303. 303.
    Meng Y, Liu JL, Zhang ZM, Lin WQ, Lin ZJ, Tong ML (2013) Ionothermal synthesis of two oxalate-bridged lanthanide(III) chains with slow magnetization relaxation by using a deep eutectic solvent. Dalton Trans 42:12853–12854PubMedCrossRefPubMedCentralGoogle Scholar
  304. 304.
    Meng Y, Chen YC, Zhang ZM, Lin ZJ, Tong ML (2014) Gadolinium oxalate derivatives with enhanced magnetocaloric effect via ionothermal synthesis. Inorg Chem 53:9052–9057PubMedCrossRefPubMedCentralGoogle Scholar
  305. 305.
    Huang HL, Lai YC, Chiang YW, Wang SL (2012) Intrinsic optical properties and divergent doping effects of manganese(II) on luminescence for tin(II) phosphate grown from a deep eutectic solvent. Inorg Chem 51:1986–1988PubMedCrossRefPubMedCentralGoogle Scholar
  306. 306.
    Liu L, Wang W, Wei H, Zhang T, Dong J (2011) Ionothermal synthesis and characterization of crystalline zirconium phosphate from oxalic acid/tetrapropylammonium bromide system. Acta Chim Sinica 69:3033–3036Google Scholar
  307. 307.
    Liu L, Li Y, Wei H, Dong M, Wang J, Slawin AMZ, Li J, Dong J, Morris RE (2009) Ionothermal synthesis of zirconium phosphates and their catalytic behavior in the selective oxidation of cyclohexane. Angew Chem Int Ed 48:2206–2209CrossRefGoogle Scholar
  308. 308.
    Lin ZS, Huang Y (2016) Tetraalkylammonium salt/alcohol mixtures as deep eutectic solvents for synthesis of high-silica zeolites. Microporous Mesoporous Mater 224:75–83CrossRefGoogle Scholar
  309. 309.
    Liu L, Chen ZF, Wei H, Li Y, Fu YC, Xu H, Li JP, Slawin AMZ, Dong JX (2010) Ionothermal synthesis of layered zirconium phosphates and their tribological properties in mineral oil. Inorg Chem 49:8270–8275PubMedCrossRefPubMedCentralGoogle Scholar
  310. 310.
    Phadtare SB, Shankarling GS (2008) Halogenation reactions in biodegradable solvent: efficient bromination of substituted 1-aminoanthra-9,10-quinone in deep eutectic solvent(choline chloride: urea). Green Chem 12:458–462CrossRefGoogle Scholar
  311. 311.
    Lobo HC, Singh BS, Shankarling GS (2012) Deep eutectic solvents and glycerol: a simple, environmentally benign and efficient catalyst/reaction media for synthesis of N-aryl phthalimide derivatives. Green Chem Lett Rev 5:487–533CrossRefGoogle Scholar
  312. 312.
    Azizi N, Marimi M (2013) Fast 62–92% yield preparation of amino acid dithiocarbamates in green solvent at room temperature. Environ Chem Lett 11:371–376CrossRefGoogle Scholar
  313. 313.
    Azizi N, Edrisi M (2015) Deep eutectic solvent catalyzed eco-friendly synthesis of imines and hydrobenzamides. Monatsh Chem 146:1695–1698CrossRefGoogle Scholar
  314. 314.
    Perez JM, Ramon DJ (2015) Synthesis of 3,5-disubstituted isoxazoles and isoxazolines in deep eutectic solvents. ACS Sustain Chem Eng 3:2343–2349CrossRefGoogle Scholar
  315. 315.
    Azizi S, Haghayegh MS (2017) Greener and additive-free reactions in deep eutectic solvent: one-pot, three-component synthesis of highly substituted pyridines. Chem Select 2:8870–8873Google Scholar
  316. 316.
    Capua M, Perrone S, Perna FM, Vitale P, Troisi L, Salomone A, Capriati V (2016) An expeditious and greener synthesis of 2-aminoimidazoles in deep eutectic solvents. Molecules 21:924–934CrossRefGoogle Scholar
  317. 317.
    Shaabani A, Hooshmand SE, Nazeri MT, Afshari R, Ghasemi S (2016) Deep eutectic solvents as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles. Tetrahedron Lett 57:3727–3730CrossRefGoogle Scholar
  318. 318.
    Sebastian P, Valles E, Gomez E (2013) First stage of silver electrodeposition in a deep eutectic solvent. Comparative behavior in aqueous medium. Electrochim Acta 112:149–158CrossRefGoogle Scholar
  319. 319.
    Bozzini B, Busson B, Humbert C, Mele C, Tadjeddine A (2016) Electrochemical fabrication of nanoporous gold decorated with manganese oxide nanowires from eutectic urea/choline chloride ionic liquids. III. Electrodeposition of Au-Mn. Electrochim Acta 218:208–215CrossRefGoogle Scholar
  320. 320.
    Sebastian P, Torralba E, Valles E, Molina A, Gomez E (2015) Advances in copper electrodeposition in chloride excess. A theoretical and experimental approach. Electrochim Acta 164:187–195CrossRefGoogle Scholar
  321. 321.
    Xie X, Zou X, Lu X, Zheng K, Cheng H, Xu Q, Zhou Z (2016) Voltammetric study and electrodeposition of Cu from CuO in deep eutectic solvents. J Electrochem Soc 163:D537–D543CrossRefGoogle Scholar
  322. 322.
    Sebastian P, Gomez E, Climent V, Feliu JM (2017) Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent. New insights. Electrochem Commun 78:51–55CrossRefGoogle Scholar
  323. 323.
    Malaquias J, Steichen M, Dale PJ (2015) One step electrodeposition of metal precursors from a deep eutectic solvent for Cu(In, Gas)Se2 thin film solar cells. Electrochim Acta 151:150–156CrossRefGoogle Scholar
  324. 324.
    Malaquias J, Steichen M, Thomassey M, Dale PJ (2015) Electrodeposition of Cu-In alloys from a choline chloride based deep eutectic solvent for photovoltaic applications. Electrochim Acta 103:15–22CrossRefGoogle Scholar
  325. 325.
    Xie X, Zou X, Lu X, Lu C, Cheng H, Xu Q, Zhou Z (2016) Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent. Appl Surf Sci 385:481–489CrossRefGoogle Scholar
  326. 326.
    Rahman MF, Bernasconi R, Magagnin L (2015) Electrodeposition of indium from a deep eutectic solvent. J Optoelectron Adv Mater 17:122–126Google Scholar
  327. 327.
    Rahman MF, Bernasconi R, Magagnin L (2015) Electrodeposition of indium phosphide from a deep eutectic solvent. J Optoelectron Adv Mater 17:568–572Google Scholar
  328. 328.
    Abbott AP, El Taib K, Ryder KS, Smith EL (2008) Electrodeposition of nickel using eutectic based ionic liquids. Trans Inst Metal Finish 86:234–240CrossRefGoogle Scholar
  329. 329.
    Cherigui AM, Sentosun K, Bouckenooge P, Vanrompay H, Bals S, Terryn H, Ustarroz J (2017) Comprehensive study of the electrodeposition of nickel nanostructures from deep eutectic solvents: self-limiting growth by electrolysis of residual water. J Phys Chem C 121:9337–9347CrossRefGoogle Scholar
  330. 330.
    Ru J, Hua Y, Xu C, Li J, Li Y, Wang D, Gong K, Zhou Z (2015) Preparation of sub-micrometer lead wires from PbO by electrodeposition in choline chloride-urea deep eutectic solvent. Adv Power Technol 26:91–97CrossRefGoogle Scholar
  331. 331.
    Ru J, Hua Y, Xu C, Li J, Li Y, Wang D, Qi C, Jie Y (2015) Morphology controlled preparation of lead powders by electrodeposition from different PbO-containing choline chloride-urea deep eutectic solvent. Appl Surf Sci 335:153–159CrossRefGoogle Scholar
  332. 332.
    Hammons JA, Ilavsky J (2017) Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach. Electrochim Acta 228:462–473CrossRefGoogle Scholar
  333. 333.
    Wei L, Xu CD, Huang L, Zhou ZY, Chen SP, Sun SG (2016) Electrochemically shape-controlled synthesis of Pd concave-disdyakis triacontahedra in deep eutectic solvent. J Phys Chem C 120:15549–15577Google Scholar
  334. 334.
    Abbott AP, Barron JC, Frisch G, Gurman S, Ryder KS, Silva AF (2011) Double layer effects on metal nucleation in deep eutectic solvents. Phys Chem Chem Phys 13:10224–10231PubMedCrossRefPubMedCentralGoogle Scholar
  335. 335.
    Li R, Liang J, Hou Y, Chu Q (2015) Enhanced corrosion performance of Zn coating by incorporating graphene oxide electrodeposited from deep eutectic solvents. RSC Adv 5:60698–60707CrossRefGoogle Scholar
  336. 336.
    Bakkar A (2014) Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning. J Hazard Mater 280:191–199PubMedCrossRefPubMedCentralGoogle Scholar
  337. 337.
    Chu Q, Liang J, Hao J (2014) Electrodeposition of zinc-cobalt alloys from choline chloride-urea ionic liquid. Electrochim Acta 115:499–503CrossRefGoogle Scholar
  338. 338.
    Fashu S, Gu CD, Zhang JL, Bai WQ, Wang XL, Tu JP (2015) Electrodeposition and characterization of Zn-Sn alloy coatings from a deep eutectic solvent based on choline chloride for corrosion protection. Surf Interface Anal 47:403–412CrossRefGoogle Scholar
  339. 339.
    Chung PP, Cantwell PA, Wilcox GD, Critchlow GW (2008) Electrodeposition of zinc-manganese alloy coatings from ionic liquid electrolytes. Trans Inst Metal Finish 86:211–219CrossRefGoogle Scholar
  340. 340.
    Bucko M, Culliton D, Betts AJ, Bajat JB (2017) The electrochemical deposition of Zn-Mn coating from choline chloride-urea deep eutectic solvent. Trans Inst Metal Finish 95:60–64CrossRefGoogle Scholar
  341. 341.
    Fashu S, Gu CD, Wang XL, Tu JP (2014) Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn-Ni alloy coatings from a deep eutectic solvent. Surf Coat Technol 242:34–421CrossRefGoogle Scholar
  342. 342.
    Xu C, Wu Q, Hua Y, Li J (2014) The electrodeposition of Zn-Ti alloys from ZnCl2-urea deep eutectic solvent. J Solid State Electrochem 18:2149–2155CrossRefGoogle Scholar
  343. 343.
    Hillman AR, Ryder KS, Zaleski CJ, Ferreira V, Beasley CA, Vieil E (2014) Application of combined electrochemical quartz crystal microbalance and probe beam deflection technique in deep eutectic solvents. Electrochim Acta 135:42–51CrossRefGoogle Scholar
  344. 344.
    Wang PK, Hsieh YT, Sun IW (2017) On the electrodeposition of arsenic in a choline chloride/ethylene glycol deep eutectic solvent. J Electrochem Soc 164:D204–D209CrossRefGoogle Scholar
  345. 345.
    Vieira L, Burt J, Richardson OW, Schloffer D, Fuchs D, Moser A, Bartlett PN, Reid G, Gollas B (2017) Tin, bismuth, and tin-bismuth alloy electrodeposition from chlorometallic salts in deep eutectic solvents. ChemistryOpen 6:393–401PubMedCrossRefPubMedCentralGoogle Scholar
  346. 346.
    Gao Y, Hu W, Gao X, Duan B (2014) Electrodeposition of SnBi coatings based on deep eutectic solvents. Surf Eng 30:59–63CrossRefGoogle Scholar
  347. 347.
    Gao Y, Hu W, Gao X, Duan B (2012) Electrodeposition of CdZn coatings based on deep eutectic solvents. Surf Eng 28:590–593CrossRefGoogle Scholar
  348. 348.
    Saravanan G, Mohan S (2012) Structure, composition and corrosion resistance studies of Co-Cr alloy electrodeposited from deep eutectic solvent (DES). J Alloys Comp 522:162–166CrossRefGoogle Scholar
  349. 349.
    You YH, Gu CD, Wang XL, Tu JP (2012) Electrodeposition of Ni-Co alloys from a deeop eutectic solvent. Surf Coat Technol 206:3632–3638CrossRefGoogle Scholar
  350. 350.
    Panzeri G, Tresoldi M, Rinaldi C, Magagnin L (2017) Electrodeposition of magnetic Sm-Co films from deep eutectic solvents and choline chloride-ethylene glycol mixtures. J Electrochem Soc 164:D930–D933CrossRefGoogle Scholar
  351. 351.
    Vijayakumar J, Mohan S, Kumar SA, Suseendiran SR, Pavithra S (2013) Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution. Int J Hydrogen Energy 38:10208–10214CrossRefGoogle Scholar
  352. 352.
    Zhang JL, Gu CD, Fashu S, Tong YY, Huang MK, Wang XL, Tu JP (2015) Enhanced corrosion resistance of Co-Sn alloy coating with a self-organized layered structure electrodeposited from deep eutectic solvent. J Electrochem Soc 162:D1–D8CrossRefGoogle Scholar
  353. 353.
    Ghosh S, Roy S (2014) Electrochemical copper deposition from an ethaline-CuCl2 2H2O DES. Surf Coat Technol 238:165–173CrossRefGoogle Scholar
  354. 354.
    Zhang QB, Abbott AP, Yang C (2015) Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent. Phys Chem Chem Phys 17:14702–14709PubMedCrossRefPubMedCentralGoogle Scholar
  355. 355.
    Ghosh S, Roy S (2015) Codeposition of Cu-Sn from Ethaline deep eutectic solvent. Electrochim Acta 183:27–38CrossRefGoogle Scholar
  356. 356.
    Miller MA, Wainwright J, Savinell RE (2017) Iron electrodeposition in a deep eutectic solvent for flow batteries. J Electrochem Soc 164:A796–A803CrossRefGoogle Scholar
  357. 357.
    Alcanfor AAC, dos Santos LPM, Dias DF, Correia AN (2017) Electrodeposition of indium on copper from deep eutectic solvents based on choline chloride and ethylene glycol. Electrochim Acta 235:553–560CrossRefGoogle Scholar
  358. 358.
    Abbott AP, Ballantyne A, Harris RC, Juma JA, Ryder KS, Forrest G (2015) A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim Acta 176:718–726CrossRefGoogle Scholar
  359. 359.
    Ru J, Hua Y, Wang D (2017) Direct electro-deoxidation of solid PbO to porous lead in choline chloride-ethylene glycol deep eutectic solvent. J Electrochem Soc 164:D143–D149CrossRefGoogle Scholar
  360. 360.
    Ru J, Hua Y, Wang D, Xu C, Li J, Li Y, Zhou Z, Gong K (2015) Mechanistic insight of in situ electrochemical reduction of solid PbO to lead in ChCl-EG deep eutectic solvent. Electrochim Acta 186:455–464CrossRefGoogle Scholar
  361. 361.
    Ru J, Hua Y, Wang D, Xu C, Zhang Q, Li J, Li Y (2016) Dissolution-electrodeposition pathway and bulk porosity on the impact of in situ reduction of solid PbO in deep eutectic solvent. Electrochim Acta 196:56–66CrossRefGoogle Scholar
  362. 362.
    Poll CG, Nelson GW, Pickup DM, Chadwick AV, Riley DJ, Payne DJ (2016) Electrochemical recycling of lead from hybrid organic-inorganic perovskites using deep eutectic solvents. Green Chem 18:1946–2955CrossRefGoogle Scholar
  363. 363.
    Su Z, Xu C, Hua Y, Li J, Ru J, Wang M, Xiong L, Zhang Y (2016) Electrochemical preparation of sub-micrometer Sn-Sb alloy powder in ChCl-EG deep eutectic solvent. Int J Electrochem Sci 11:3311–3324CrossRefGoogle Scholar
  364. 364.
    Vieira L, Whitehead AH, Gollas B (2014) Mechanistic study of zinc electrodeposition from deep eutectic electrolytes. J Electrochem Soc 161:D7–D13CrossRefGoogle Scholar
  365. 365.
    Starykevich M, Salak AN, Ivanou DK, Lisenkov AD, Zheludkevich MI, Ferreira MGS (2015) Electrochemical deposition of zinc from deep eutectic solvent on barrier alumina layers. Electrochim Acta 170:284–291CrossRefGoogle Scholar
  366. 366.
    Vieira L, Schennach R, Gollas B (2016) The effect of electrode material on the electrodeposition of zinc from deep eutectic solvents. Electrochim Acta 197:344–352CrossRefGoogle Scholar
  367. 367.
    Starykevich M, Salak AN, Ivanou DK, Yasakau KA, Andre PS, Ferreira RAS, Zheludkevich MI, Ferreira MGS (2017) Effect of the anodic titania layer thickness on electrodeposition of zinc on Ti/TiO2 from deep eutectic solvent. J Electrochem Soc 164:D88–D94CrossRefGoogle Scholar
  368. 368.
    Starykevich M, Salak AN, Zheludkevich ML, Ferreira MGS (2017) Modification of porous titania templates for uniform metal electrodeposition from deep eutectic solvent. J Electrochem Soc 164:D335–D343CrossRefGoogle Scholar
  369. 369.
    Abbott AP, Capper G, McKenzie KJ, Ryder KS (2007) Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. J Electroanal Chem 599:288–294CrossRefGoogle Scholar
  370. 370.
    Fashu S, Khan T (2016) Electrodeposition of ternary Zn-Ni-Sn alloys from an ionic liquid based on choline chloride and their characterization. Trans Inst Metal Finish 94:237–245CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryHebrew UniversityJerusalemIsrael

Personalised recommendations