Advertisement

The Variety of Deep Eutectic Solvents

  • Yizhak Marcus
Chapter

Abstract

The following definition is generally used in this book: deep eutectic solvents (DESs) are binary mixtures of definite composition of two components, one of which being ionic, that yield a liquid phase at ambient conditions, ≤25 °C. Some cases that do not conform to this restrictive definition are, however, also included, since they have properties and uses similar to those that do. The general mode of preparation of deep eutectic solvents, if their ingredients are solids at ambient conditions, is to mix the components at the prescribed molar ratio and heat the mixture to a moderately elevated temperature (generally 60–100 °C) for a few hours until the entire mass is converted to a homogeneous clear liquid. If one of the ingredients is itself liquid at ambient conditions the other component is dissolved in it, if necessary by moderate heating for some time. A variant is to dissolve both components in water, which is then vacuum evaporated or removed by freeze-drying, and to dry the resulting deep eutectic solvent in a desiccator [1, 2].

References

  1. 1.
    Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68CrossRefGoogle Scholar
  2. 2.
    Espino M, de los Ángeles Fernández M, Gomez FJV, Silva MF (2016) Natural designer solvents for greening analytical chemistry. Trends Anal Chem 76:126–136CrossRefGoogle Scholar
  3. 3.
    Garcia G, Atilhan M, Aparicio S (2015) An approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chem Phys Lett 634:151–155CrossRefGoogle Scholar
  4. 4.
    Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 2003:70–71CrossRefGoogle Scholar
  5. 5.
    Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Separ Purif Technol 81:216–222CrossRefGoogle Scholar
  6. 6.
    Gilman H, Jones RG (1943) 2,2,2-Trifluoroethylamine and 2,2,2-trifluorodiazoethane. J Am Chem Soc 65:1458–1460CrossRefGoogle Scholar
  7. 7.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147CrossRefGoogle Scholar
  8. 8.
    Lu M, Han G, Jiang Y, Zhang X, Deng D, Ai N (2015) Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride. J Chem Thermodyn 88:72–77CrossRefGoogle Scholar
  9. 9.
    Florindo C, Oliveira FS, Rebelo LPN, Fernandes AM, Marrucho IM (2014) Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chem Eng 2:2416–2425CrossRefGoogle Scholar
  10. 10.
    Berthod A, Ruiz-Angel MJ, Carda-Broch S (2018) Recent advances in ionic liquid uses in separation techniques. J Cromatogr A (ahead of print).  https://doi.org/10.1016/j.chroma.20174.09.044
  11. 11.
    Maugeri Z, Dominguez de Maria P (2012) Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv 2:421–425CrossRefGoogle Scholar
  12. 12.
    Zhang Q, de Olivera Vigier K, Royer S, Jerome F (2012) Deep eutectic solvents: synthesis, properties, and application. Chem Soc Rev 41:7108–7146CrossRefGoogle Scholar
  13. 13.
    Guo W, Hou Y, Ren S, Wu W, Tian S (2013) Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J Chem Eng Data 58:866–872CrossRefGoogle Scholar
  14. 14.
    Shahbaz K, AlNashef LM, Lin RJT, Hashim MA, Mjalli FS, Farid MM (2016) A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change material. Solar Energy Mater Solar Cells 155:147–154CrossRefGoogle Scholar
  15. 15.
    Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872CrossRefGoogle Scholar
  16. 16.
    Abbott AP, Caper G, Gray S (2006) Design of improved eutectic solvents using hole theory. Chem Phys Chem 7:803–806CrossRefGoogle Scholar
  17. 17.
    Chen Z, Ludwig M, Warr GG, Atkin R (2017) Effect of cation alkyl chain length on surface forces and physical properties in deep eutectic solvents. Coll Interf Sci 494:373–379CrossRefGoogle Scholar
  18. 18.
    Siongco KR, Leron RB, Li MH (2013) Densities, refractive indices, and viscosities of N, N-diethylethanolammonium chloride-glycerol or—ethylene glycol deep eutectic solvents abd their aqueous solutions. J Chem Thermodyn 65:65–72CrossRefGoogle Scholar
  19. 19.
    Bahadori L, Charabarti MH, Mjalli FS, AlAnashef IN, Abdul Mahan NS, Hashim MA (2013) Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim Acta 113:205–211CrossRefGoogle Scholar
  20. 20.
    Wang Y, Hou Y, Wu W, Liu D, Ji Y, Ren S (2016) Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem 18:3089–3097CrossRefGoogle Scholar
  21. 21.
    Jibril B, Mjalli F, Naser J, Gano Z (2014) New tetrapropylammonium bromide-based deep eutectic solvents: synthesis and characterizations. J Mol Liq 199:462–469CrossRefGoogle Scholar
  22. 22.
    Mjalli FS, Naser J, Jibril B, Alizadeh V, Gano Z (2014) Tetrabutylammonium chloride based liquid analogues and their physical properties. J Chem Eng Data 59:2242–2251CrossRefGoogle Scholar
  23. 23.
    Naser J, Mjalli FS, Gano Z (2016) Molar heat capacity of type III deep eutectic solvents. J Chem Eng Data 61:1608–1615CrossRefGoogle Scholar
  24. 24.
    Hayyan M, Aissaoui T, Hashim MA, Alsaadi MA, Hayyan A (2015) Triethylene glycol based deep eutectic solvents and their physical properties. J Taiwan Inst Chem Eng 50:24–30CrossRefGoogle Scholar
  25. 25.
    Su HZ, Yin JM, Liu QS, Li CP (2015) Properties of four deep eutectic solvents: density, electrical conductivity, dynamic viscosity, and refractive index. Acta Phys Chim Sin 31:1468–1473Google Scholar
  26. 26.
    Li JJ, Xiao H, Tang XD, Zhou M (2016) Green carboxylic acid deep eutectic solvents as solvents for extractive desulfurization. Energy Fuels 30:5411–5418CrossRefGoogle Scholar
  27. 27.
    Ali E, Hadj-Kali MK, Mulyono S, Alnashef I (2016) Analysis of operating conditions for CO2 capturing process using deep eutectic solvents. Int J Greenhouse Gas Cont 47:342–350CrossRefGoogle Scholar
  28. 28.
    Rodriguez NR, Requejo PF, Kroon MC (2015) Aliphatic-aromatic separation using deep eutectic solvents as extracting agents. Ind Eng Chem Res 54:11404–11412CrossRefGoogle Scholar
  29. 29.
    Taysun MB, Sert E, Atalay FS (2015) Physical properties of benzyltrimethylammonium chloride based deep eutectic solvents and employment as catalysts. J Mol Liq 223:845–852CrossRefGoogle Scholar
  30. 30.
    De Santi V, Cardellini F, Brinchi L, Germani R (2012) Novel Brønsted deep eutectic solvent as reaction media for esterification of carboxylic acid with alcohols. Tetrahedron Lett 53:5151–5155CrossRefGoogle Scholar
  31. 31.
    Basaiahgari A, Panda S, Gardas RL (2017) Acoustic, volumetric, transport, optical, and rheological properties of benzyltripropylammonium chloride based deep eutectic solvents. Fluid Phase Equil 448:41–49CrossRefGoogle Scholar
  32. 32.
    Zubeir LF, Lacroix MHM, Kroon MC (2014) Low transition temperature mixtures as innovative and sustainable CO2 capture solvents. J Phys Chem B 118:14429–14441CrossRefGoogle Scholar
  33. 33.
    Mirza NR, Nicholas NJ, Wu Y, Smith KH, Kentish SE, Stevens GW (2017) Viscosities and carbon dioxide solubilities of guanidine carbonate and malic acid-based eutectic solvents. J Chem Eng Data 62:348–354CrossRefGoogle Scholar
  34. 34.
    Garcia G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644CrossRefGoogle Scholar
  35. 35.
    AlOmar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA (2016) Glycerol-based deep eutectic solvents: physical properties. J Mol Liq 215:98–103CrossRefGoogle Scholar
  36. 36.
    Kudlak B, Qwczarek K, Namiesnik J (2015) Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ Sci Pollut Res 22:11975–11992CrossRefGoogle Scholar
  37. 37.
    Hussey CL, Sheffler TB (1982) Composition determination of liquid chloroaluminate molten salts by nuclear magnetic resonance spectroscopy. Anal Chem 54:2378–2379CrossRefGoogle Scholar
  38. 38.
    Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Eutectic based ionic liquids with metal-containing anions and cations. Chem Eur J 13:6495–6501CrossRefGoogle Scholar
  39. 39.
    Abood HMA, Abbott AP, Ballantyne AD, Ryder KS (2011) Do all ionic liquids need organic cations? Characterization of [AlCl2·namide]+AlCl4 and comparison with imidazolium based systems. Chem Comm 47:3523–3525CrossRefGoogle Scholar
  40. 40.
    Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel moisture-stable Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Comm 2001:2010–2011CrossRefGoogle Scholar
  41. 41.
    Abbott AP, Al-Barzinjy AA, Abbott PD, Frisch G, Harris RC, Hartley J, Ryder KS (2014) Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Phys Chem Chem Phys 16:9047–9055CrossRefGoogle Scholar
  42. 42.
    Shahbaz K, AlNashef IM, Lin RJT, Hashim MA, Mjalli ES, Farid MM (2016) A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change material. Solar Energy Mater Solar Cell 155:147–155CrossRefGoogle Scholar
  43. 43.
    Abbott AP, Capper G, Davies DL, Rasheed R (2004) Ionic liquids based on metal halide/substituted quaternary ammonium salt mixtures. Inorg Chem 43:3447–3454CrossRefGoogle Scholar
  44. 44.
    Naser J, Mjalli FS, Jibril B, Al-Hatmi S, Gano Z (2013) Potassium carbonate as a salt for deep eutectic solvents. Intl J Chem Eng Appl 4:114–118Google Scholar
  45. 45.
    Liu B, Wei F, Zhao J, Wang Y (2013) Characterization of amide-thiocyanate eutectic ionic liquids and their application in SO2 absorption. RSC Adv 3:2470–2476CrossRefGoogle Scholar
  46. 46.
    Liang H, Li H, Wang Z, Wu F, Chem L, Huang X (2001) New binary room-temperature molten salt electrolytes based on urea and LITFSI. J Phys Chem B 105:9966–9969CrossRefGoogle Scholar
  47. 47.
    Hu Y, Li H, Hueng X, Chem L (2004) Novel room temperature molten salt electrolytes based on LITFSI and acetamide for lithium batteries. Electrochem Comm 6:28–32CrossRefGoogle Scholar
  48. 48.
    Boisset A, Jacquemin J, Anouti M (2013) Physical properties of a new deep eutectic solvent based on lithium bis[trifluoromethl)sulfonyl]imide and N-methyacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochim Acta 102:120–126CrossRefGoogle Scholar
  49. 49.
    Baokou X, Anouti M (2015) Physical properties of a new deep eutectic solvent based on a sulfonium ionic liquid as a suitable electrolyte for electric double-layer capacitors. J Phys Chem C 119:970–979CrossRefGoogle Scholar
  50. 50.
    Roehrer S, Bezold F, Garcia EM, Minceva M (2016) Deep eutectic solvents in countercurrent and centrifugal partition chromatography. J Chromatogr A 1434:102–110CrossRefGoogle Scholar
  51. 51.
    Zeng CX, Qi SJ, Xin RP, Yang B, Wang YH (2016) Synergistic behavior of betaine-urea mixture: formation of deep eutectic solvent. J Mol Liq 219:74–78CrossRefGoogle Scholar
  52. 52.
    Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramon DJ (2016) Deep eutectic solvents: the organic reaction medium of the century. Eur J Org Chem 2016:612–632CrossRefGoogle Scholar
  53. 53.
    Cardellini F, Tiecco M, Germani R, Cardinali G, Corte L, Roscini L, Spreti N (2014) Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: characterization of their properties and their toxicity. RSC Adv 4:55990–56002CrossRefGoogle Scholar
  54. 54.
    Mjalli FS (2016) Novel amino acids based ionic liquids analogues: acidic and basic amino acids. J Taiwan Inst Chem Eng 61:64–74CrossRefGoogle Scholar
  55. 55.
    Mjalli FS, AlHajri R, AlMuhtaseb A, Ahmed O, Nagaraju M (2016) Novel amino acid-based ionic liquid analogues: neutral hydroxylic and sulphur-containing amino acids. Asia Pac J Chem Eng 11:683–694CrossRefGoogle Scholar
  56. 56.
    Domanska U, Bogel-Lukasik R (2005) Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide. J Phys Chem B 109:12124–12132CrossRefGoogle Scholar
  57. 57.
    Domanska U (2006) Thermophysical properties and thermodynamic phase behavior of ionic liquids. Thermochim Acta 448:19–30CrossRefGoogle Scholar
  58. 58.
    Domanska U, Krolikowski M (2010) Phase equilibria of the binary systems (1-butyl-3-methylimidazolium tosylate ionic liquid + water or organic solvent). J Chem Thermodyn 42:355–362CrossRefGoogle Scholar
  59. 59.
    Domanska U, Krolikowski M (2010) Phase equilibria of the binary systems (N-hexyl-3-methypyridinium tosylate ionic liquid + water or organic solvent). J Chem Thermodyn 43:1488–1494CrossRefGoogle Scholar
  60. 60.
    Letcher TM, Ramjugernath D, Tumba K, Krolikowsko M, Domanska U (2010) (Solid + liquid) and (liquid + liquid) phase equilibria and correlation of the binary systems {N-butyl-3-methylpyridinium tosylate + water, or + an alcohol, or + a hydrocarbon}. Fluid Phase Equil 294:89–97CrossRefGoogle Scholar
  61. 61.
    Krolikowski M, Karpinska M, Zawadzki M (2013) Phase equilibria study of (ionic liquid + water) binary mixtures. Fluid Phase Equil 354:66–74CrossRefGoogle Scholar
  62. 62.
    Domanska U, Krolikowski M, Paduszynski K (2011) Physicochemical and phase behavior of piperidinium-based ionic liquids. Fluid Phase Equil 303:1–9CrossRefGoogle Scholar
  63. 63.
    Domanska U, Krolikowski M (2011) Phase behavior of 1-butyl-1-methylpyrrolidinium thiocyanate ionic liquid. Fluid Phase Equil 308:55–63CrossRefGoogle Scholar
  64. 64.
    Krolikowski M (2014) (Solid-Liquid) and (liquid-liquid) phase equilibria of (IL + water) binary systems. The influence of the ionic liquid structure on the mutual solubility. Fluid Phase Equil 361:273–281CrossRefGoogle Scholar
  65. 65.
    Zawadzki M, Krolikowski M, Antonowicz J, Lipinski P, Karpinska M (2016) Physicochemical and thermodynamic properties of the (1-alkyl-1-methylmorpholinium bromide [C1Cn=3,4,5MOR]Br, or 1-methyl-1-pentylpiperidinium bromide [[C1C5PIP]Br + water) binary systems. J Chem Thermodyn 98:324–337CrossRefGoogle Scholar
  66. 66.
    Krolikowski M, Karpinska M, Zawadzki M (2012) Phase equilibria studies of the binary systems (N-hexylisoquinolinium thiocyanate ionic liquid + organic solvent or water). J Phys Chem B 8:4292–4299CrossRefGoogle Scholar
  67. 67.
    Domanska U, Zawadzki M, Tshibangu MM, Ramjugernath D, Letcher TM (2010) Phase equilibria study of (N-butylquinolinium bis(trifluoromethylsulfonyl)imide + aromatic hydro-carbons, or an alcohol) binary systems. J Chem Thermodyn 42:1180–1186CrossRefGoogle Scholar
  68. 68.
    Domanska U, Krolikowski M, Ramjugernath D, Letcher TM, Tumba K (2010) Phase equilibria and modeling of pyridinium-based ionic liquid solutions. J Phy Chem B 114:15011–15017CrossRefGoogle Scholar
  69. 69.
    Linke WF, Seidel A (1958) Solubilities of inorganic and metal-organic compounds, 4th edn, vol I, A–Ir, American Chemical Society, WashingtonGoogle Scholar
  70. 70.
    Linke WF, Seidell A (1965) Solubilities of inorganic and metal-organic compounds, 4th edn, vol II, K–Z, American Chemical Society, WashingtonGoogle Scholar
  71. 71.
    Krigintsev AN, Trushnikova LN, Lavrent’eva VG (1972) Rastvorimost’ Neorganicheskikh Veshchesty v Vode, Khimiya, LeningradGoogle Scholar
  72. 72.
    Marcus Y (2018) Aqueous salt hydrates: unconventional deep eutectic solvents. ACS Sustain Chem Eng 5:11780–11787CrossRefGoogle Scholar
  73. 73.
    Marcus Y, Minevich A, Ben-Dor L (2005) Solid-liquid equilibrium diagrams of common ion binary salt hydrate mixtures involving nitrates and chlorides of magnesium, cobalt, nickel, manganese, and iron(III). Thermochim Acta 432:23–29CrossRefGoogle Scholar
  74. 74.
    Schmit H, Rathgeber C, Hennemann P, Hieber S (2014) Three-step method to determine the eutectic composition of binary and ternary mixtures. J Therm Anal Calorim 117:595–602CrossRefGoogle Scholar
  75. 75.
    Velardez GF, Alavi S, Thompson DL (2004) Molecular dynamics studies of melting and solid state transitions of ammonium nitrate. J Chem Phys 120:9159–9195CrossRefGoogle Scholar
  76. 76.
    Kimura H, Kai J (1988) Mixtures of calcium chloride hexahydrate with some salt hydrates or anhydrous salts as latent heat storage materials. Energy Convers Manag 28:197–200CrossRefGoogle Scholar
  77. 77.
    van Osch DJGP, Zubeir LF, van den Bruinhorst A, Rocha MAA, Kroon MC (2015) Hydrophobic deep eutectic solvents as water immiscible extractants. Green Chem 17:4518–4521CrossRefGoogle Scholar
  78. 78.
    van Osch DJGP, Parmentier D, Dietz CHJT, an den Bruinhorst A, Tuinier R, Kroon MC (2016) Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem Comm 52:11987–11990Google Scholar
  79. 79.
    Florindo C, Branco LC, Marrucho IM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equil 448:135–142CrossRefGoogle Scholar
  80. 80.
    Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp GJ, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705CrossRefGoogle Scholar
  81. 81.
    Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamis tinctorius L. Anal Chem 85:6272–6278CrossRefGoogle Scholar
  82. 82.
    Nam MW, Zhao J, Lee MS, Jeong JH, Lee J (2015) Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green Chem 17:1718–1727CrossRefGoogle Scholar
  83. 83.
    Ali MC, Yang Q, Fine AA, Jin W, Zhang Z, Xing H, Ren C (2016) Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents. Green Chem 18:157–164CrossRefGoogle Scholar
  84. 84.
    Faggian M, Sut S, Perissutti B, Baldan V, Grabnar I, Dall’Acqua S (2016) Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of Rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules 21:1531/1–10CrossRefGoogle Scholar
  85. 85.
    Duan L, Dou LL, Guo L, Li P, Liu EH (2016) Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain Chem Eng 4:2405–2411CrossRefGoogle Scholar
  86. 86.
    Ruesgas-Ramon M, Figueroa-Espinoza MC, Durand E (2017) Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J Agricult Food Chem 65:3591–3601CrossRefGoogle Scholar
  87. 87.
    Ribeiro BD, Florindo C, Iff LC, Coelho MAZ, Marrucho IM (2015) Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain Chem Eng 3:2469–2477CrossRefGoogle Scholar
  88. 88.
    Duarte ARC, Ferreira ASD, Barreiros S, Cabrita E, Reis RL, Paiva A (2017) A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: solubility and permeability studies. Eur J Pharm Biopharm 114:296–304CrossRefGoogle Scholar
  89. 89.
    Zhang K, Ren S, Hou Y, Wu W (2017) Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents. J Hazard Mater 324:457–463CrossRefGoogle Scholar
  90. 90.
    Yao C, Hou Y, Ren S, Wu W, Zhang K, Ji Y, Liu H (2017) Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents. Chem Eng J 326:620–626CrossRefGoogle Scholar
  91. 91.
    Zhuang B, Dou LL, Li P, Liu EH (2017) Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi cacumen. J Pharmaceut Biomedical Anal 134:234–239CrossRefGoogle Scholar
  92. 92.
    Daneshjou S, Khodaverdian S, Dabirmanesh B, Rahimi F, Daneshjoo S, Ghazi D, Khajeh K (2017) Improvements of chondroinases ABCI stability in natural deep eutectic solvents. J Mol Liq 227:21–25CrossRefGoogle Scholar
  93. 93.
    Zeng CX, Qi SJ, Xin RP, Yang B, Wang YH (2016) Synergistic behavior of betaine-urea mixture: formation of deep eutectic solvent. J Mol Liq 219:74–78CrossRefGoogle Scholar
  94. 94.
    An J, Trujillo-Rodriguez MJ, Pino V, Anderson JL (2017) Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A 1500:1–23CrossRefGoogle Scholar
  95. 95.
    Cardellini F, Germani R, Cardinali G, Corte L, Roscini L, Spreti N, Tiecco M (2015) Room temperature deep eutectic solvents of camphorsulfonic acid and sulfobetains: hydrogen bond-based mixtures with low iconicity and structure-dependent toxicity. RSC Adv 5:31772–31786CrossRefGoogle Scholar
  96. 96.
    Zhou E, Liu H (2014) A novel deep eutectic solvents synthesized by solid organic compounds and its application on dissolution for cellulose. Asian J Chem 26:3626–3630CrossRefGoogle Scholar
  97. 97.
    van Osch DJGP, Kollau LJBM, van den Bruinhorst A, Asikainen S, Rochas MAA, Kroon MC (2017) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 19:2636–2665CrossRefGoogle Scholar
  98. 98.
    Das A, Das S, Biswas R (2015) Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations. J Chem Phys 142:034505/1–9CrossRefGoogle Scholar
  99. 99.
    Jeong KM, Lee MS, Nam MW, Zhao J, Jin Y, Lee DK, Kwon SW, Jeong JH, Lee J (2015) Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J Chromatogr A 1424:10–17CrossRefGoogle Scholar
  100. 100.
    Jeong KM, Ko J, Zhao J, Jin Y, Yoo DE, Han SY, Lee J (2017) Multi-functional deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J Cleaner Prod 151:87–90CrossRefGoogle Scholar
  101. 101.
    Li X, Row KH (2017) Application of deep eutectic solvents in hybrid molecularly imprinted polymers and mesoporous siliceous material for solid-phase extraction of levoflaxin from green bean extract. Anal Sci 33:611–617CrossRefGoogle Scholar
  102. 102.
    Li N, Wang Y, Xu K, Huang Y, Wen Q, Ding X (2016) Development of green betaine-based deep eutectic solvent aqueous two-phase system for extraction of protein. Talanta 152:23–32CrossRefGoogle Scholar
  103. 103.
    Mukherjee K, Tarif E, Barman A, Biswas R (2017) Dynamics of a PEG based non-ionic deep eutectic solvent: temperature dependence. Fluid Phase Equil 448:22–29CrossRefGoogle Scholar
  104. 104.
    Cui Y, Li C, Yin J, Li S, Jia Y, Bao M (2017) Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride. J Mol Liq 236:338–343CrossRefGoogle Scholar
  105. 105.
    Mao C, Zhao R, Li X, Gao X (2017) Trifluoromethanesulfonic acid-based DESs as extractants and catalysts for removal of DBT from model oil. RSC Adv 7:12511–12805CrossRefGoogle Scholar
  106. 106.
    Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2010) Using deep eutectic solvents for the removal of glycerol from palm oil based biodiesel. J Appl Sci 10:3349–3354CrossRefGoogle Scholar
  107. 107.
    Li G, Deng D, Chen Y, Shan H, Ai N (2014) Solubilities and thermodynamic properties of CO2 in choline chloride based deep eutectic solvents. J Chem Thermodyn 75:58–62CrossRefGoogle Scholar
  108. 108.
    Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chm 13:82–90CrossRefGoogle Scholar
  109. 109.
    Chen Y, Ai N, Li G, Shan H, Cui Y, Deng D (2014) Solubility of carbon dioxide in eutectic mixtures of choline chloride and dihydric alcohols. J Chem Eng Data 59:1247–1253CrossRefGoogle Scholar
  110. 110.
    Liu W, Jiang W, Zhu W, Li H, Guo T, Zhu W, Li H (2016) Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents. J Mol Catal A Chem 424:261–268CrossRefGoogle Scholar
  111. 111.
    Aroso IM, Paiva A, Reis RL, Duarte ARC (2017) Natural deep eutectic solvents from choline chloride and betaine—physicochemical properties. J Mol Liq 241:654–661CrossRefGoogle Scholar
  112. 112.
    Zhu J, Yu K, Zhu Y, Ye F, Song N, Xu Y (2017) Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T = (293.15 to 333.15) K: the influence of electronic effect of substitution group. J Mol Liq 232:182–187CrossRefGoogle Scholar
  113. 113.
    Liu X, Gao B, Jiang Y, Ai N, Deng D (2017) Solubilities and thermodynamic properties of carbon dioxide in guaiacol-based deep eutectic solvents. J Chem Eng Data 62:1448–1455CrossRefGoogle Scholar
  114. 114.
    Sarmat S, Xie Y, Mikkola J-P, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 41:290–301CrossRefGoogle Scholar
  115. 115.
    Zhao H, Baker GA, Holmes S (2011) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9:1908–1916CrossRefGoogle Scholar
  116. 116.
    Gouveia ASL, Oliveira FS, Kurnia KA, Marrucho IM (2016) Deep eutectic solvents as azeotrope breakers: liquid-Liquid extraction and COSMO-RS prediction. ACS Sustain Chem Eng 4:5640–5650CrossRefGoogle Scholar
  117. 117.
    Florindo C, Oliveira MM, Branco LC, Marrucho IM (2017) Carbohydrates-based deep eutectic solvents: thermophysical properties and rice straw dissolution. J Mol Liq 247:441–447CrossRefGoogle Scholar
  118. 118.
    Deng D, Liu X, Gao B (2017) Physicochemical properties and investigation of azole-based deep eutectic solvents as efficient and reversible SO2 absorbents. Ind Eng Chem Res 56:13850–13856CrossRefGoogle Scholar
  119. 119.
    Pontes PVA, Crespo EA, Martins MAR, Silva LP, Neves CMSS, Maximo GJ, Hubinger MD, Batista EAC, Pinho SP, Coutinho JAP, Sadowski G, Held C (2017) Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equil 448:69–80CrossRefGoogle Scholar
  120. 120.
    Teles ARR, Capela EV, Carmo RS, Coutinho JAP, Silvestre AJD, Freire MG (2017) Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equil 448:15–21CrossRefGoogle Scholar
  121. 121.
    Deng WW, Zong Y, Xiao YX (2017) Hexafluoroisopropanol-based deep eutectic solvent/salt aqueous two-phase systems for extraction of anthraquinones from Rhei Radix et Rhizoma samples. ACS Sustain Chem Eng 5:4267–4275CrossRefGoogle Scholar
  122. 122.
    Florindo C, Branco LC, Marrucho LM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equil 448:135–142CrossRefGoogle Scholar
  123. 123.
    Dietz CHJT, van Osch DJGP, Kroon MC, Sadowski G, van Sint Annaland M, Gallucci F, Zubeir LF, Held C (2017) PC-SAFT modeling of CO2 solubilities in hydrophobic deep eutectic solvents. Fluid Phase Equil 448:94–98CrossRefGoogle Scholar
  124. 124.
    Florindo C, McIntosh AJS, Welton T, Branco LC, Marrucho IM (2018) A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. Phys Chem Chem Phys 20:206–213CrossRefGoogle Scholar
  125. 125.
    Qin L, Li J, Cheng H, Chen L, Qi Z, Yuan W (2017) Association extraction for vitamin E recovery from deodorizer distillate by in situ formation of deep eutectic solvent. AIChE J 63:2212–2220CrossRefGoogle Scholar
  126. 126.
    Li G, Jiang Y, Liu X, Deng D (2016) New levulinic acid-based deep eutectic solvents: synthesis and physicochemical property determination. J Mol Liq 222:201–207CrossRefGoogle Scholar
  127. 127.
    Hizaddin HF, Hadj-Kali MK, Ramalingam A, Hasim MA (2016) Effective denitrogenation of diesel fuel using ammonium- and phosphonium-based deep eutectic solvents. J Chem Thermodyn 95:164–175CrossRefGoogle Scholar
  128. 128.
    Rahma WSA, Mjalli FS, Al-Wahaibi T, Al-Hashmi AA (2017) Polymeric-based deep eutectic solvents for effective desulfurization of liquid fuel at ambient conditions. Chem Eng Res Des 120:271–283CrossRefGoogle Scholar
  129. 129.
    Hadj-Kali MK, Mulyono S, Hizaddin HF, Wazeer I, El-Blidi L, Ali E, Hashim MA, AlNashef IM (2016) Removal of thiophene from mixtures with n-heptane by selective extraction using deep eutectic solvents. Ind Eng Chem Res 55:8415–8423CrossRefGoogle Scholar
  130. 130.
    Cao J, Yang M, Cao F, Wang J, Su E (2017) Well-designed hydrophobic deep eutectic solvents as green and efficient media for extraction of artemisinin from artemisia annual leaves. ACS Sustain Chem Eng 5:3270–3278CrossRefGoogle Scholar
  131. 131.
    Sarmad S, Xie Y, Mikkola JP, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 42:290–321CrossRefGoogle Scholar
  132. 132.
    Taysun MB, Sert E, Atalat FS (2017) Effect of hydrogen bond donor on the physical properties of benzyltriethylammonium chloride based deep eutectic solvents and their use in 2-ethylhexyl acetate synthesis as a catalyst. J Chem Eng Data 62:1173–1181CrossRefGoogle Scholar
  133. 133.
    Wang Y, Hou Y, Wu W, Liu YJ, Rena S (2016) Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem 18:3089–3097CrossRefGoogle Scholar
  134. 134.
    Germani R, Orlandini M, Tiecco M, Del Giaccp T (2017) Novel low viscous, green and amphiphilic N-oxide/phenylacetic acid based deep eutectic solvents. J Mol Liq 240:233–239CrossRefGoogle Scholar
  135. 135.
    Kareem MA, Mjalli FS, Hashim MA, Hadj-Kali MKO, Bagh FSG, AlNashef IM (2013) Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenyl-phosphonium iodide for potential use in the separation of aromatics from naphtha. J Chem Thermodyn 65:138–149CrossRefGoogle Scholar
  136. 136.
    Zs Gano, Mjalli FS, Al-Wahaibi T, Al-Wahaibi Y, AlNashef IM (2015) Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-component design. Chem Eng Proc 93:10–20CrossRefGoogle Scholar
  137. 137.
    Ghaedi H, Ayoub M, Sufian S, Hailegiorgis SM, Murshi G, Khan SW (2018) Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation. J Chem Thermodyn 116:50–60CrossRefGoogle Scholar
  138. 138.
    Griffin PJ, Cosby T, Holt AP, Benson RS, Sangoro JR (2014) Charge transport and structural dynamics in carboxylic acid based deep eutectic mixtures. J Phys Chem B 118:9378–9385CrossRefGoogle Scholar
  139. 139.
    Yang D, Han Y, Qi H, Wang Y, Dai S (2017) Efficient absorption of SO2 by EmimCl-EG deep eutectic solvent. ACS Sustain Chem Eng 5:6382–6386CrossRefGoogle Scholar
  140. 140.
    Kaur S, Gupta A, Kashyap HK (2016) Nanoscale spatial heterogeneity in deep eutectic solvents. J Phys Chem B 120:6712–6720CrossRefGoogle Scholar
  141. 141.
    Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15:20054–20063CrossRefGoogle Scholar
  142. 142.
    Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082CrossRefGoogle Scholar
  143. 143.
    Juneidi I, Hayyan M, Hashim MA (2015) Evaluation of toxicity and biodegradability for cholinium based deep eutectic solvents. RSC Adv 5:83636–83647CrossRefGoogle Scholar
  144. 144.
    Domanska U, Okuniewska P, Markowska A (2016) Phase equilibria in binary systems of ionic liquids or deep eutectic solvents with 2-phenylethanol or water. Fluid Phase Equil 424:68–78CrossRefGoogle Scholar
  145. 145.
    Francisco M, van den Bruinhorst A, Kroon MC (2013) Low transition temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085CrossRefGoogle Scholar
  146. 146.
    Avd Bruinhorst, Spiriouni T, Hill JR, Kroon MC (2018) Experimental and molecular modeling evaluation of the physicochemical properties of proline-based deep eutectic solvents. J Phys Chem B 122:369–379CrossRefGoogle Scholar
  147. 147.
    Dietz CHJT, Kroon MC, Annaland MVS, Gallucci F (2017) Thermophysical properties and solubility of different sugar-derived molecules in deep eutectic solvents. J Chem Eng Data 62:3633–3641CrossRefGoogle Scholar
  148. 148.
    Craveiro R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionisio M, Barreiros S, Reis RL, Duarte ARC, Paiva A (2016) Properties and thermal behavior of natural deep eutectic solvents. J Mol Liq 215:534–540CrossRefGoogle Scholar
  149. 149.
    Florindo C, Romero L, Rintoul O, Branco LC, Marrucho IM (2018) From phase change materials to green solvents: hydrophobic low viscous fatty acid-based deep eutectic solvents. ACS Sustain Chem Eng 6:888–3895CrossRefGoogle Scholar
  150. 150.
    Ghaedi H, Ayoub M, Sufian S, Shariff AM, Lal B, Wilfred CD (2017) Density and refractive index measurements of transition temperature mixture (deep eutectic analogies) based on potassium carbonate with dual hydrogen bond donors for CO2 capture. J Chem Thermodyn 118:147–158CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryHebrew UniversityJerusalemIsrael

Personalised recommendations