Advertisement

Introduction

  • Yizhak Marcus
Chapter

Abstract

Deep eutectic solvents (DESs) are a certain class of liquids at ambient conditions (that have freezing points below, say, 25 °C) that are binary compositions of two components, each of which has a melting point above that of the deep eutectic solvent, hence they are eutectics. Deep eutectic solvents are a subgroup of room temperature ionic liquids (RTILs), but are binary mixtures contrary to ordinary RTILs that are single substances. Being generally ionic in nature, deep eutectic solvents should have appreciable electrical conductivities, but nonionic deep eutectic solvents have also been described. As solvents, they should be able to dissolve a variety of solutes, be these organic substances, metal oxides, or substances of other kinds. The deep eutectic solvents also should be noninflammable, nontoxic, and friendly to the environment (‘green’, biodegradable) in order to be useful for industrial processes. The freezing point of 25 °C is set as an arbitrary upper limit to deep eutectic solvents to be dealt with in this book.

References

  1. 1.
    Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents, 4th edn. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Marcus Y (1998) Properties of solvents. Wiley, ChichesterGoogle Scholar
  3. 3.
    Marcus Y (2017) Drugs in binary solvent mixtures—their preferential solvation. Chronicles Pharm Sci 1:170–180Google Scholar
  4. 4.
    Marcus Y (2002) Solvent mixtures. Properties and preferential solvation. M. Dekker, New YorkGoogle Scholar
  5. 5.
    Kaiser CS, Romp H, Schmidt PC (2001) Pharmaceutical applications of supercritical carbon dioxide. Pharmazie 56:907–926PubMedPubMedCentralGoogle Scholar
  6. 6.
    Yuan JTC, Novak JS (2012) Industrial applications using supercritical carbon dioxide for food. Dense Phase Carbon Dioxide 227–238Google Scholar
  7. 7.
    Zhang X, Heinonen S, Levanen E (2014) Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Adv 4:61137–61152CrossRefGoogle Scholar
  8. 8.
    Fang Zh, Xu Ch (eds) (2014) Near-critical and supercritical water and their applications for biorefineries. Springer, DordrechtGoogle Scholar
  9. 9.
    Marcus Y (2012) Supercritical water. Wiley, New YorkCrossRefGoogle Scholar
  10. 10.
    Loppinet-Serani A, Aymonier C, Cansell F (2008) Current and foreseeable applications of supercritical water for energy and the environment. ChemSusChem 1:486–503CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Marcus Y (2016) Ionic liquid properties. From molten salts to RTILs. Springer Intl. Publ., SwitzerlandCrossRefGoogle Scholar
  12. 12.
    Pandey S (2006) Analytical applications of room temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556:38–45CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Jindal R, Sablok A (2015) Preparation and applications of room temperature ionic liquids. Curr Green Chem 2:135–155CrossRefGoogle Scholar
  14. 14.
    Tsada T, Hussey CL (2007) Electrochemical applications of room temperature ionic liquids. Electrochem Soc Interface 16:42–49Google Scholar
  15. 15.
    Abbott AP, Capper G, Davies DL, Munro HI, Rasheed RK, Tambyrajah V (2001) Preparation of novel moisture-stable Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Comm 2001:2010–2011CrossRefGoogle Scholar
  16. 16.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 2003:70–71CrossRefGoogle Scholar
  18. 18.
    DeSimone JM (2002) Practical approaches to green solvents. Science 297:799–803CrossRefGoogle Scholar
  19. 19.
    DeSimone L, Popoff F (2000) Eco-efficiency: the business link to sustainable development. MIT Press, CambridgeGoogle Scholar
  20. 20.
    Jessop PG (2011) Searching for green solvents. Green Chem 13:1391–1398CrossRefGoogle Scholar
  21. 21.
    Michalek K, Krzysztoforski J, Henczka M, da Ponte MN, Bogel-Lukasik E (2015) Cleaning of microfiltration membranes from industrial contaminants using “greener” alternatives in a continuous mode. J Supercrit Fluids 102:115–122CrossRefGoogle Scholar
  22. 22.
    Horvath IT, Rabai J (1994) Facile catalyst separation without water: fluorous biphase hydro-formylation of olefins. Science 266:72–75CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Soh L, Eckelman MJ (2016) Green solvents in biomass processing. ACS Sustain Chem Eng 4:5821–5837CrossRefGoogle Scholar
  24. 24.
    Henderson RK, Jimenez-Gonzalez C, Constable DJC, Alston SR, Inglis GGA, Fisher G, Sherwood J, Binks SP, Curzons AD (2011) Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem 13:854–862CrossRefGoogle Scholar
  25. 25.
    Prat D, Pardigon O, Flemming HW, Letestu S, Ducandas V, Isnard P, Guntrum E, Senac T, Ruisseau S, Cruciani P, Hosek P (2013) Sanofi’s solvent selection guide: a step toward more sustainable processes. Org Proc Res Dev 17:1517–1525CrossRefGoogle Scholar
  26. 26.
    Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, Dunn PJ (2016) CHEM21 selection guide of classical and less classical-solvents. Green Chem 18:288–296CrossRefGoogle Scholar
  27. 27.
    Bubalo MC, Vidovic S, Redfovnikovic IR, Jokic S (2015) Green solvents for green technologies. J Chem Technol Biotechnol 90:1631–1639CrossRefGoogle Scholar
  28. 28.
    Rogers RD, Seddon KR (eds) (2002) Ionic liquids: industrial applications to green chemistry. American Chemical Society, Washington DCGoogle Scholar
  29. 29.
    Maase M (2008) Industrial applications of ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis, vol 2, 2nd edn. Wiley, New York, pp 663–687Google Scholar
  30. 30.
    Liaw HJ, Chen CC, Chen YC, Chen JR, Huang SK, Liu SN (2012) Relationship between flashpoint of ionic liquids and their thermal decomposition. Green Chem 14:2001–2008CrossRefGoogle Scholar
  31. 31.
    Liaw HJ, Chen CC, Chen YC, Chen JR, Liu SN (2014) Effect of heating on the flashpoint of ionic liquids. Procedia Eng 84:293–296CrossRefGoogle Scholar
  32. 32.
    Liaw HJ, Huang SK, Chen HJ, Liu SN (2012) Reason for ionic liquids to be combustible. Procedia Eng 45:502–506CrossRefGoogle Scholar
  33. 33.
    Chen YT, Chen CC, Su CH, Liaw HJ (2014) Auto-ignition characteristics of selected ionic liquids. Procedia Eng 84:285–292CrossRefGoogle Scholar
  34. 34.
    Toledo Hijo QAAC, Maximo GM, Costa MC, Batista EAC, Meirelles AJA (2016) Applications of ionic liquids in the food and bioproducts industries. ACS Sustain Chem Eng 4:5347–5369CrossRefGoogle Scholar
  35. 35.
    Prydderch H, Heise A, Gathergood N (2016) Toxicity and bio-acceptability in the context of biological processes in ionic liquid media. RSC Green Chem Ser 36:168–201Google Scholar
  36. 36.
    Nockemann P, Thijs B, Driesen K, Janssen CR, Van Hecke K, VanMeervelt L, Kossmann S, Kirchner B, Binnemans K (2007) Choline saccharinate and choline acesulfamate: ionic liquids with low toxicities. J Phys Chem B 111:5254–5263CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Made M, Liu JF, Pang L (2015) Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ Sci Technol 49:12611–12627CrossRefGoogle Scholar
  38. 38.
    Mrozik W, Kotlowska A, Kamysz W, Stepnowski P (2012) Sorption of ionic liquids onto soils: experimental and chemometric studies. Chemosphere 88:1202–1207CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Morrison HG, Sun CC, Neervannan S (2009) Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm 378:136–139CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Singh J, Singh NB (2015) Solidification and computational analysis of o-nitroaniline-α-naphthol eutectic system. Fluid Phase Equil 386:168–179CrossRefGoogle Scholar
  42. 42.
    Marcus Y, Minevich A, Ben-Dor L (2005) Solid-liquid equilibrium diagrams of common ion binary salt hydrate mixtures involving nitrates and chlorides of magnesium, cobalt, nickel, manganese, and iron(III). Thermochim Acta 432:23–29CrossRefGoogle Scholar
  43. 43.
    Mokhosoev MV, Gotanova TT (1966) Interaction of crystal hydrates of the nitrates of several elements. Russ J Inorg Chem 11:466–469Google Scholar
  44. 44.
    Linke WF, Seidell A (1965) Solubilities of inorganic and metal-organic compounds, 4th edn, vol II. K – Z, Am. Chem. Soc., WashingtonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryHebrew UniversityJerusalemIsrael

Personalised recommendations