Advertisement

Interaction of Gravity with Cell Metabolism

  • Wolfgang Hanke
  • Florian P. M. Kohn
  • Maren Neef
  • Rüdiger Hampp
Chapter
Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)

Abstract

Plants orient their organs, explore, and adapt to their environment mainly by sensing light and the direction of gravity. Some theories exist about gravity sensing including as a starting point the presence of dense sedimentable particles in specialized gravity-sensing cell types or protoplast-pressure phenomena inducing a cascade of biophysical and biochemical events that finally transform the directional information into gravioriented growth. However, apart from the directional information, plant cells show various more general gravity effects like changes in membrane-located processes and changes in gene expression, protein expression, and protein modulation as well as metabolic consequences in response to altered gravity conditions. In the following, mainly based on data from callus cultures of A. thaliana, we summarize the present knowledge in the field of gravity-affected cell metabolism, especially related to Ca2+ and hydrogen peroxide signaling.

Keywords

Arabidopsis thaliana Gene expression Metabolic gravity response Plants Protein expression Protein modulation Secondary messengers 

References

  1. Aguilar R, Montoya L, de Jiménez ES (1998) Synthesis and phosphorylation of maize acidic ribosomal proteins implications in translational regulation. Plant Physiol 116(1):379–385PubMedCentralCrossRefPubMedGoogle Scholar
  2. Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19(6):735–747PubMedCrossRefGoogle Scholar
  3. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983PubMedCrossRefGoogle Scholar
  4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aubry-Hivet D, Nziengui H, Rapp K, Oliveira O, Paponov I, Li Y, Hauslage J, Vagt N, Braun M, Ditengou FA (2014) Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Plant Biol 16(s1):129–141PubMedCrossRefGoogle Scholar
  6. Babbick M, Cogoli-Greuter M, Lowe KC, Power JB, Anthony P, Dijkstra C, Davey MR, Hampp R (2005) Gravitational field related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. In: 17th ESA symposium on European rocket and balloon programmes and related research, pp 493–497Google Scholar
  7. Babbick M, Dijkstra C, Larkin O, Anthony P, Davey M, Power J, Lowe K, Cogoli-Greuter M, Hampp R (2007) Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation). Adv Space Res 39(7):1182–1189CrossRefGoogle Scholar
  8. Bailey-Serres J, Vangala S, Szick K, Lee C-HK (1997) Acidic phosphoprotein complex of the 60S ribosomal subunit of maize seedling roots (components and changes in response to flooding). Plant Physiol 114(4):1293–1305PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baluska F, Hasenstein KH (1997) Root cytoskeleton: its role in perception of and response to gravity. Planta 203(Suppl):S69–S78PubMedCrossRefGoogle Scholar
  10. Barjaktarović Ž, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R (2007) Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J Exp Bot 58(15–16):4357–4363PubMedCrossRefGoogle Scholar
  11. Barjaktarović Ž, Babbick M, Nordheim A, Lamkemeyer T, Magel E, Hampp R (2009a) Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper-and simulated microgravity. Microgravity Sci Technol 21(1–2):191–196CrossRefGoogle Scholar
  12. Barjaktarović Ž, Schütz W, Madlung J, Fladerer C, Nordheim A, Hampp R (2009b) Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J Exp Bot 60(3):779–789PubMedPubMedCentralCrossRefGoogle Scholar
  13. Batistic O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820:1283–1293PubMedCrossRefGoogle Scholar
  14. Baumstark-Khan C, Hellweg CE, Arenz A, Meier MM (2005) Cellular monitoring of the nuclear factor κB pathway for assessment of space environmental radiation. Radiat Res 164(4):527–530PubMedCrossRefGoogle Scholar
  15. Behera S, Krebs M, Loro G, Schumacher K, Costa A, Kudla J (2013) Ca2+ imaging in plants using genetically encoded yellow cameleon Ca2+ indicators. Cold Spring Harb Protoc 2013(8):700–703PubMedCrossRefGoogle Scholar
  16. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Meth 3(4):281–286CrossRefGoogle Scholar
  17. Bose S, Stratford FL, Broadfoot KI, Mason GG, Rivett AJ (2004) Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J 378(Pt 1):177–184PubMedPubMedCentralCrossRefGoogle Scholar
  18. Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229(2–4):133–142PubMedCrossRefGoogle Scholar
  19. Catherall A, Lopez-Alcaraz P, Benedict K, King P, Eaves L (2005) Cryogenically enhanced magneto-Archimedes levitation. New J Phys 7(1):118CrossRefGoogle Scholar
  20. Chen R, Guan C, Boonsirichai K, Masson PH (2002) Complex physiological and molecular processes underlying root gravitropism. Plant Mol Biol 49(3–4):305–317PubMedCrossRefGoogle Scholar
  21. Correll MJ, Pyle TP, Millar KD, Sun Y, Yao J, Edelmann RE, Kiss JZ (2013) Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238(3):519–533PubMedCrossRefGoogle Scholar
  22. Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, Lo Schiavo F (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca(2+)-dependent scavenging system. Plant J 62(5):760–772PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cottrell JS, London U (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567PubMedCrossRefGoogle Scholar
  24. Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139(2):847–856PubMedPubMedCentralCrossRefGoogle Scholar
  25. De Pino V, Borán M, Norambuena L, González M, Reyes F, Orellana A, Moreno S (2007) Complex formation regulates the glycosylation of the reversibly glycosylated polypeptide. Planta 226(2):335–345PubMedCrossRefPubMedCentralGoogle Scholar
  26. Delgado IJ, Wang Z, de Rocher A, Keegstra K, Raikhel NV (1998) Cloning and characterization of AtRGP1 a reversibly autoglycosylated Arabidopsis protein implicated in cell wall biosynthesis. Plant Physiol 116(4):1339–1350PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620PubMedCrossRefPubMedCentralGoogle Scholar
  28. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao T-h, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13(4):907–921PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21(2):71–88PubMedCrossRefPubMedCentralGoogle Scholar
  31. Feige B, Gimmler H, Jeschke WD, Simonis W (1969) Eine Methode zur dünnschicht-chromatographischen Auftrennung von 14C- und 32P-markierten Stoffwechselprodukten. J Chromatogr 41:775–782CrossRefGoogle Scholar
  32. Fengler S, Spirer I, Neef M, Ecke M, Hauslage J, Hampp R (2015a) Changes in gene expression of Arabidopsis thaliana cell cultures upon exposure to real and simulated partial-g forces. Microgravity Sci Technol 28:319–329.  https://doi.org/10.1007/s12217-015-9452-y CrossRefGoogle Scholar
  33. Fengler S, Spirer I, Neef M, Ecke M, Nieselt K, Hampp R (2015b) A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on Board of Shenzhou 8. BioMed Res Int 2015:547495.  https://doi.org/10.1155/2015:547495 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Forsthoefel NR, Cushman MAF, Cushman JC (1995) Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Plant Physiol 108(3):1185–1195PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gehring CA, Irving HR, Parish RW (1990) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci 87(24):9645–9649PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gilroy S, Bethke PC, Jones RL (1993) Calcium homeostasis in plants. J Cell Sci 106(2):453–461PubMedPubMedCentralGoogle Scholar
  37. Grant CM (2008) Metabolic reconfiguration is a regulated response to oxidative stress. J Biol 7(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gress TM, Hoheisel JD, Lennon GG, Zehetner G, Lehrach H (1992) Hybridization fingerprinting of high-density cDNA-library arrays with cDNA pools derived from whole tissues. Mamm Genome 3(11):609–619PubMedCrossRefPubMedCentralGoogle Scholar
  39. Häder D-P, Hemmersbach R (1997) Graviperception and graviorientation in flagellates. Planta 203(1):S7–S10PubMedCrossRefGoogle Scholar
  40. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hampp R, Goller M, Füllgraf H, Eberle I (1985) Pyridine and adenine nucleotide status, and pool sizes of a range of metabolites in chloroplasts, mitochondria and the cytosol/vacuole of Avena mesophyll protoplasts during dark/light transition: effect of pyridoxal phosphate. Plant Cell Physiol 26(1):99–108Google Scholar
  42. Hampp R, Naton B, Hoffmann E, Mehrle W, Schönherr K, Hemmersbach-Krause R (1992) Hybrid formation and metabolism of plant cell protoplasts under microgravity. Physiologist 35(Suppl):S27–S30PubMedGoogle Scholar
  43. Hampp R, Hoffmann E, Schönherr K, Johann P, De Filippis L (1997) Fusion and metabolism of plant cells as affected by microgravity. Planta 203(Suppl):S42–S53PubMedCrossRefGoogle Scholar
  44. Hampp R, Maier R, Martzivanou M, Ecke M, Magel E (2001) Gravitational effects on metabolism and gene expression of Arabidopsis thaliana cell cultures. In: Proceedings of 15th ESA symposium on European rocket and balloon programmes, Biarritz, pp 399–403Google Scholar
  45. Hausmann N, Fengler S, Hennig A, Franz-Wachtel M, Hampp R, Neef M (2014) Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biol (Stuttg) 16(Suppl 1):120–128CrossRefGoogle Scholar
  46. Hoffmann E, Schonherr K, Hampp R (1996) Regeneration of plant cell protoplasts under microgravity: investigation of protein patterns by SDS-PAGE and immunoblotting. Plant Cell Rep 15:914–919PubMedCrossRefGoogle Scholar
  47. Horneck G (1992) Radiobiological experiments in space: a review. Int J Radiat Appl Instrum D 20(1):185–205Google Scholar
  48. Horneck G (1999) Astrobiology studies of microbes in simulated interplanetary space. In: Laboratory astrophysics and space research. Springer, Dordrecht, pp 667–685CrossRefGoogle Scholar
  49. Hoson T, Soga K (2003) New aspects of gravity responses in plant cells. Int Rev Cytol 229:209–244PubMedCrossRefGoogle Scholar
  50. Hoson T, Soga K, Mori R, Saiki M, Nakamura Y, Wakabayashi K, Kamisaka S (2002) Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol 43(9):1067–1071PubMedCrossRefGoogle Scholar
  51. Hoson T, Soga K, Wakabayashi K, Kamisaka S, Tanimoto E (2003) Growth and cell wall changes in rice roots during spaceflight. In: Roots: the dynamic interface between plants and the earth. Springer, Dordrecht, pp 19–26CrossRefGoogle Scholar
  52. Johannes E, Collings DA, Rink JC, Allen NS (2001) Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes. Plant Physiol 127(1):119–130PubMedPubMedCentralCrossRefGoogle Scholar
  53. Karl T (2015) Microgravity-dependent changes of proteome phosphorylation in Arabidopsis thaliana cell cultures. Master thesis, University of TuebingenGoogle Scholar
  54. Kennedy AR (2014) Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res 1:10–43CrossRefGoogle Scholar
  55. Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136(1):2790–2805PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. Crit Rev Plant Sci 19(6):551–573PubMedCrossRefGoogle Scholar
  57. Kiss JZ, Kumar P, Millar KD, Edelmann RE, Correll MJ (2009) Operations of a spaceflight experiment to investigate plant tropisms. Adv Space Res 44(8):879–886CrossRefGoogle Scholar
  58. Klychnikov O, Li K, Lill H, De Boer A (2006) The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins. J Exp Bot 58(5):1013–1023PubMedCrossRefGoogle Scholar
  59. Knight H, Trewavas AJ, Knight MR (1997) Recombinant aequorin methods for measurement of intracellular calcium in plants. Plant Mol Biol Manual C4:1–22Google Scholar
  60. Kraft TF, van Loon JJ, Kiss JZ (2000) Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta 211(3):415–422PubMedCrossRefGoogle Scholar
  61. Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. Plant J 69(1):181–192PubMedCrossRefGoogle Scholar
  62. Lal SK, Lee C, Sachs MM (1998) Differential regulation of enolase during anaerobiosis in maize. Plant Physiol 118(4):1285–1293PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331PubMedPubMedCentralCrossRefGoogle Scholar
  64. Limbach C, Hauslage J, Schafer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139(2):1030–1040PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lin WH, Rui Y, Hui M, Xu ZH, Xue HW (2004) DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Res 14(1):34–45PubMedCrossRefGoogle Scholar
  66. Link BM, Wagner ER, Cosgrove DJ (2001) The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus. Physiol Plant 113(2):292–300PubMedCrossRefGoogle Scholar
  67. Lu Y-T, Feldman LJ (1997) Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog. Planta 203:S91–S97PubMedCrossRefGoogle Scholar
  68. Maier R-M, Martzivanou M, Magel E, Zheng H, Cogoli-Greuter M, Hampp R (2003) Anaplerotic responses of “Arabidopsis thaliana” cell cultures to altered gravitational field strengths. In: European rocket and balloon programmes and related research, pp 253–258Google Scholar
  69. Manzano AI, Van Loon JJ, Christianen PC, Gonzalez-Rubio JM, Medina FJ, Herranz R (2012) Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics 13(1):105PubMedPubMedCentralCrossRefGoogle Scholar
  70. Marco R, Leandro-Garcia LJ, Benguria A, Herranz R, Zeballos A, Gassert G, van Loon JJ, Medina FJ (2006) Gene expression variations during Drosophila metamorphosis in real and simulated gravity. In: 36th COSPAR scientific assembly, Beijing, 16–23 JulyGoogle Scholar
  71. Martzivanou M (2004) Expressionsanalysen an Arabidopsis thaliana Kalluskulturzellen unter verschiedenen Gravitationsbedingungen. PhD thesis, University of TübingenGoogle Scholar
  72. Martzivanou M, Hampp R (2003) Hyper-gravity effects on the Arabidopsis transcriptome. Physiol Plant 118(2):221–231PubMedCrossRefGoogle Scholar
  73. Martzivanou M, Babbick M, Cogoli-Greuter M, Hampp R (2006) Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229:155–162PubMedCrossRefGoogle Scholar
  74. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489PubMedCrossRefGoogle Scholar
  75. Minic Z, Jouanin L (2006) Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem 44(7):435–449PubMedCrossRefGoogle Scholar
  76. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498PubMedCrossRefGoogle Scholar
  77. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96(5):2135–2140PubMedCrossRefGoogle Scholar
  78. Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130(2):720–728PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101(29):10554–10559PubMedCrossRefGoogle Scholar
  80. Nasir A, Strauch S, Becker I, Sperling A, Schuster M, Richter P, Weißkopf M, Ntefidou M, Daiker V, An Y (2014) The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol 16(s1):113–119PubMedCrossRefGoogle Scholar
  81. Neef M, Hennig A, Hausmann N, Hampp R (2011) A parabolic flight profile as reflected by fluctuations in cytosolic calcium and gene expression of plant cells. In: 20th symposium on European rocket and balloon programmes and related research, pp 433–438Google Scholar
  82. Neef M, Fengler S, Hausmann N, Ecke M, Hennig A, Franz-Wachtel M, Hampp R (2013a) Cytosolic calcium, hydrogen peroxide, and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: a holistic view. In: 21st ESA symposium on European rocket and balloon programmes and related research (ESA SP-721)Google Scholar
  83. Neef M, Fengler S, Ecke M, Hausmann N, Hampp R (2013b) Joint european partial-g parabolic flight campaign calcium analysis in Arabidopsis thaliana cell cultures. In: Proceedings of ‘Life in space for life on Earth’ (ESA SP-706)Google Scholar
  84. Neef M, Ecke M, Hampp R (2015) Real-time recording of cytosolic calcium levels in Arabidopsis thaliana cell cultures during parabolic flights. Microgravity Sci Technol 27(4):305–312CrossRefGoogle Scholar
  85. Neef M, Denn T, Ecke M, Hampp R (2016) Intracellular calcium decreases upon hyper gravity-treatment of Arabidopsis thaliana cell cultures. Microgravity Sci Technol 28:331–336CrossRefGoogle Scholar
  86. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53(372):1237–1247PubMedCrossRefGoogle Scholar
  87. Obenland DM, Brown CS (1994) The influence of altered gravity on carbohydrate metabolism in excised wheat leaves. J Plant Physiol 144(6):696–699PubMedCrossRefGoogle Scholar
  88. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660PubMedCrossRefGoogle Scholar
  89. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedCrossRefGoogle Scholar
  90. Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13(1):179–191PubMedPubMedCentralCrossRefGoogle Scholar
  91. Paul A-L, Popp M, Gurley W, Guy C, Norwood K, Ferl R (2005) Arabidopsis gene expression patterns are altered during spaceflight. Adv Space Res 36(7):1175–1181CrossRefGoogle Scholar
  92. Paul AL, Manak MS, Mayfield JD, Reyes MF, Gurley WB, Ferl RJ (2011) Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. Astrobiology 11(8):743–758PubMedCrossRefGoogle Scholar
  93. Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ (2012) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12(1):40–56PubMedPubMedCentralCrossRefGoogle Scholar
  94. Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8(10):498–504PubMedCrossRefGoogle Scholar
  95. Perera IY, Heilmann I, Chang SC, Boss WF, Kaufman PB (2001) A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol 125(3):1499–1507PubMedPubMedCentralCrossRefGoogle Scholar
  96. Perera IY, Hung CY, Brady S, Muday GK, Boss WF (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol 140(2):746–760PubMedPubMedCentralCrossRefGoogle Scholar
  97. Perrin RM, Young L-S, Narayana Murthy U, Harrison BR, Wang Y, Will JL, Masson PH (2005) Gravity signal transduction in primary roots. Ann Bot 96(5):737–743PubMedPubMedCentralCrossRefGoogle Scholar
  98. Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the Earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796PubMedPubMedCentralCrossRefGoogle Scholar
  99. Poovaiah BW, McFadden JJ, Reddy AS (1987) The role of calcium ions in gravity signal perception and transduction. Physiol Plant 71:401–407PubMedCrossRefGoogle Scholar
  100. Poovaiah BW, Yang T, van Loon JJ (2002) Calcium/calmodulin-mediated gravitropic response in plants. J Gravit Physiol 9(1):P211–P214PubMedGoogle Scholar
  101. Pyle T, Souret F, Correll M, Kiss J (2001) The effects of gravity and the spaceflight environment on the gene expression profile of Arabidopsis thaliana seedlings. Ph.D. thesis, Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USAGoogle Scholar
  102. Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3(5):423–434PubMedCrossRefGoogle Scholar
  103. Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28(2):123–133PubMedCrossRefGoogle Scholar
  104. Roos W, Evers S, Hieke M, Tschope M, Schumann B (1998) Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids. Phytoalexin biosynthesis in cultured cells of eschscholtzia californica. Plant Physiol 118(2):349–364PubMedPubMedCentralCrossRefGoogle Scholar
  105. Rosen E, Chen R, Masson PH (1999) Root gravitropism: a complex response to a simple stimulus? Trends Plant Sci 4(10):407–412PubMedCrossRefGoogle Scholar
  106. Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127:193–252PubMedCrossRefGoogle Scholar
  107. Salmi M, Roux S (2008) Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229(1):151–159PubMedCrossRefGoogle Scholar
  108. Sarwat M, Ahmad P, Nabi G, Hu X (2013) Ca(2+) signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 33(1):97–109PubMedCrossRefGoogle Scholar
  109. Schütz W, Hausmann N, Krug K, Hampp R, Macek B (2011) Extending SILAC to proteomics of plant cell lines. Plant Cell 23(5):1701–1705PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shen-Miller J, Hinchman R, Gordon S (1968) Thresholds for georesponse to acceleration in gravity-compensated Avena seedlings. Plant Physiol 43(3):338–344PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sievers A (1991) Gravity sensing mechanisms in plant cells. Gravit Space Biol 4(2):43–50Google Scholar
  112. Sobick V, Sievers A (1978) Responses of roots to simulated weightlessness on the fast-rotating clinostat. Life Sci Space Res 17:285–290Google Scholar
  113. Soga K (2013) Resistance of plants to gravitational force. J Plant Res 126(5):589–596PubMedCrossRefGoogle Scholar
  114. Soga K, Kotake T, Wakabayashi K, Kamisaka S, Hoson T (2008) Transient increase in the transcript levels of gamma-tubulin complex genes during reorientation of cortical microtubules by gravity in adzuki bean (Vigna angularis) epicotyls. J Plant Res 121(5):493–498PubMedCrossRefGoogle Scholar
  115. Staves MP (1997) Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta 203(Suppl 1):S79–S84PubMedCrossRefGoogle Scholar
  116. Steingraber M, Outlaw WH, Hampp R (1988) Subcellular compartmentation of fructose 2, 6-bisphosphate in oat mesophyll cells. Planta 175(2):204–208PubMedCrossRefGoogle Scholar
  117. Stracke R, Werber M, Weisshaar B (2001) Th.E R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456PubMedCrossRefGoogle Scholar
  118. Stutte G, Monje O, Hatfield R, Paul A, Ferl R, Simone C (2006) Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 224(5):1038–1049PubMedCrossRefGoogle Scholar
  119. Sun L, van Nocker S (2010) Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biol 10(1):152PubMedPubMedCentralCrossRefGoogle Scholar
  120. Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319(5867):1241–1244PubMedCrossRefGoogle Scholar
  121. Toyota M, Gilroy S (2013) Gravitropism and mechanical signaling in plants. Am J Bot 100(1):111–125PubMedCrossRefPubMedCentralGoogle Scholar
  122. Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146(2):505–514PubMedPubMedCentralCrossRefGoogle Scholar
  123. Toyota M, Ikeda N, Sawai-Toyota S, Kato T, Gilroy S, Tasaka M, Morita MT (2013) Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J 76:648–660.  https://doi.org/10.1111/tpj.12324 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2(2):79–85PubMedPubMedCentralCrossRefGoogle Scholar
  125. Umeda M, Manabe Y, Uchimiya H (1997) Phosphorylation of the C2 subunit of the proteasome in rice (Oryza sativa L.). FEBS Lett 403(3):313–317PubMedCrossRefPubMedCentralGoogle Scholar
  126. Vasilenko A, Popova A (1996) Energetic metabolism response in algae and higher plant species from simulation experiments with the clinostat. Adv Space Res 17(6–7):103–106PubMedCrossRefPubMedCentralGoogle Scholar
  127. Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A (1998) Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 436(1):115–118PubMedCrossRefPubMedCentralGoogle Scholar
  128. Wan XS, Zhou Z, Kennedy AR (2003) Adaptation of the dichlorofluorescein assay for detection of radiation-induced oxidative stress in cultured cells. Radiat Res 160(6):622–630PubMedCrossRefPubMedCentralGoogle Scholar
  129. Wan XS, Zhou Z, Ware JH, Kennedy AR (2005) Standardization of a fluorometric assay for measuring oxidative stress in irradiated cells. Radiat Res 163(2):232–240PubMedCrossRefPubMedCentralGoogle Scholar
  130. Wang H, Zheng HQ, Sha W, Zeng R, Xia QC (2006) A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation. J Exp Bot 57(4):827–835PubMedCrossRefPubMedCentralGoogle Scholar
  131. Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19(12):4022–4034PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yoshioka R, Soga K, Wakabayashi K, Takeba G, Hoson T (2003) Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls. Adv Space Res 31(10):2187–2193PubMedCrossRefPubMedCentralGoogle Scholar
  133. Zhang Y, Wang L, Xie J, Zheng H (2015) Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta 241(2):475–488PubMedCrossRefPubMedCentralGoogle Scholar
  134. Zupanska AK, Denison FC, Ferl RJ, Paul A-L (2013) Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Am J Bot 100(1):235–248PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Wolfgang Hanke
    • 1
  • Florian P. M. Kohn
    • 1
  • Maren Neef
    • 2
  • Rüdiger Hampp
    • 2
  1. 1.Institute of PhysiologyUniversity of HohenheimStuttgartGermany
  2. 2.Institute for Microbiology and Infection Biology Tübingen (IMIT)University of TübingenTübingenGermany

Personalised recommendations