Image Forgery Detection

  • Xiaodong Lin


The objectives of this chapter are to:


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    J. Redi, W. Taktak, J.-L. Dugelay. Digital Image Forensics: a booklet for beginners Multimedia Tools and Applications, vol. 51, pp. 133–162, October 2011CrossRefGoogle Scholar
  5. 5.
    Gajanan K. Birajdar, Vijay H. Mankar,Digital image forgery detection using passive techniques: A survey, Digital Investigation, 2013, vol. 10, pp. 226–245.CrossRefGoogle Scholar
  6. 6.
    C. I. Podilchuk and E. J. Delp, Digital watermarking: Algorithms and applications, IEEE Signal Processing Magazine, 2001, pp. 33–46.CrossRefGoogle Scholar
  7. 7.
    C. Paar and J. Pelzl, Understanding Cryptography—A Textbook for Students and Practitioners. Berlin, Germany: Springer-Verlag, 2010.CrossRefGoogle Scholar
  8. 8.
    X. Hou, J. Harel, and C. Koch, Image Signature: Highlighting Sparse Salient Regions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 1, 2012.Google Scholar
  9. 9.
    N. Warif, A. Wahab, M. Idris, R. Ramli, R. Salleh, S. Shamshirband, K.-K. Choo, Copy-move forgery detection: Survey, challenges and future directions, Journal of Network and Computer Applications, vol. 75, pp. 259–278, 2016.CrossRefGoogle Scholar
  10. 10.
    W. Luo, Z. Qu, F. Pan, J. Huang. A survey of passive technology for digital image forensics. Frontiers of Computer Science in China, vol. 1, no. 2, pp. 166-179, 2007.CrossRefGoogle Scholar
  11. 11.
    M.K. Johnson and H. Farid. Exposing Digital Forgeries Through Chromatic Aberration. ACM Multimedia and Security Workshop, Geneva, Switzerland, 2006Google Scholar
  12. 12.
    A. Popescu, H. Farid, Exposing digital forgeries by detecting traces of re-sampling. IEEE Transactions on Signal Process 2005, vol. 53, no. 2, pp. 758–67.MathSciNetCrossRefGoogle Scholar
  13. 13.
    C. Song, X. Lin. Natural Image Splicing Detection Based on Defocus Blur at Edges. Proc. IEEE/CIC International Conference on Communications in China (ICCC), Shanghai, China, 2014.Google Scholar
  14. 14.
    L. B. Lucy. An iterative technique for the rectification of observed distributions. The astronomical journal, vol. 79, no. 6, pp. 745–754, 1974Google Scholar
  15. 15.
    N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series, vol 2. Cambridge, MA: MIT press, 1949Google Scholar
  16. 16.
    R. Fergus, B. Singh, A. Hertzmann, S. Roweis, W. Freeman. Removing camera shake from a single photograph. In: Proceedings of ACM SIGGRAPH, pp 787–794, 2006Google Scholar
  17. 17.
    T. Kenig, Z. Kam, A. Feuer. Blind image deconvolution using machine learning for three-dimensional microscopy. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12. pp. 2191–2204, 2010CrossRefGoogle Scholar
  18. 18.
    Anat Levin, Yair Weiss, Frédo Durand, William T. Freeman: Understanding Blind Deconvolution Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. vol. 33, no. 12, pp. 2354-2367, 2011CrossRefGoogle Scholar
  19. 19.
    E. Kee, M.K. Johnson, and H. Farid. Digital image authentication from JPEG headers. IEEE Transactions on Information Forensics and Security, 2011, vol. 6, no. 3, pp. 1066-1075.CrossRefGoogle Scholar
  20. 20.
    H. Farid, A survey of image forgery detection, IEEE Signal Processing Magazine, vol. 2, no. 26, pp. 16–25, 2009.CrossRefGoogle Scholar
  21. 21.
    W. Luo, Z. Qu, J. Huang, and G. Qiu, A novel method for detecting cropped and recompressed image block, IEEE Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, 2007, pp. 217–220.Google Scholar
  22. 22.
    S. Ye, Q. Sun, and E. C. Chang, Detecting digital image forgeries by measuring inconsistencies of blocking artifact, IEEE International Conference on Multimedia and Expo, Beijing, China, 2007, pp. 12–15.Google Scholar
  23. 23.
    Y. Huang, W. Lu, W. Sun, D. Long. Improved DCT-based detection of copy-move forgery in images. Forensic Science International, vol. 206, no. 1-3, pp. 178–184, 2011CrossRefGoogle Scholar
  24. 24.
    J. Fridrich, D. Soukalm, J. Luka, Detection of Copy-Move Forgery in Digital Images, Proc. of DFRWS 2003, Cleveland, OH, USA, August 5-8 2003Google Scholar
  25. 25.
  26. 26.
    D. Tralic, I. Zupancic, S. Grgic, M. Grgic, "CoMoFoD - New Database for Copy-Move Forgery Detection", in Proc. 55th International Symposium ELMAR-2013, pp. 49-54, September 2013Google Scholar
  27. 27.
    CoMoFoD - Image Database for Copy-Move Forgery Detection.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xiaodong Lin
    • 1
  1. 1.Department of Physics and Computer Science, Faculty of ScienceWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations