Advertisement

Energy Consideration on the Role of Damping

  • Yoshihiko SugiyamaEmail author
  • Mikael A. Langthjem
  • Kazuo Katayama
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 255)

Abstract

In Sect.  4.3 of the previous chapter, it has been shown that introduction of small internal damping to Beck’s column leads to a considerable reduction in the flutter limit, from \(p_{* } = 20.05\) (for the undamped case) to \(p_{cr} = 10.94\) (for the damped case). This effect is referred to as the destabilizing effect of small damping. This chapter presents an energy-based discussion on the role of internal damping in the dynamics of Beck’s column with damping.

References

  1. 1.
    Fox, C. (1987). An introduction to the calculus of variations. New York: Dover Publications, Inc.zbMATHGoogle Scholar
  2. 2.
    Lanczos, C. (1986). The variational principles of mechanics. New York: Dover Publications, Inc.zbMATHGoogle Scholar
  3. 3.
    Cook, R. D., Malkus, D. S., & Plesha, M. E. (1989). Concepts and applications of finite element analysis. New York: Wiley.zbMATHGoogle Scholar
  4. 4.
    Shames, I. H., & Dym, C. L. (2003). Energy and finite element method in structural mechanics. New York: Taylor & Francis.zbMATHGoogle Scholar
  5. 5.
    Pedersen, P., & Seyranian, A. P. (1983). Sensitivity analysis for problems of dynamic stability. International Journal of Solids and Structures, 19, 315–335.CrossRefGoogle Scholar
  6. 6.
    Benjamin, T. B. (1961). Dynamics of a system of articulated pipes conveying fluid, I. Theory. Proceedings of the Royal Society of London, A, 261, 457–486.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Benjamin, T. B. (1961). Dynamics of a system of articulated pipes conveying fluid, II. Experiments. Proceedings of the Royal Society of London, A, 261, 487–499.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lighthill, M. J. (1978). Waves in fluids. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  9. 9.
    Lighthill, M. J. (1970). Aquatic animal propulsion of high hydromechanical efficiency. Journal of Fluid Mechanics, 44, 265–301.CrossRefGoogle Scholar
  10. 10.
    Benjamin, T. B. (1960). Effect of a flexible boundary on hydrodynamic stability. Journal of Fluid Mechanics, 9, 513–532.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Benjamin, T. B. (1963). The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows. Journal of Fluid Mechanics, 16, 436–450.CrossRefGoogle Scholar
  12. 12.
    Crighton, D. G., & Oswell, J. E. (1991). Fluid loading with mean flow, I. Response of an elastic plate to localized excitation. Philosophical Transactions of the Royal Society of London, A, 335, 557–592.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Landahl, M. T. (1962). On the stability of a laminar incompressive boundary layer over a flexible surface. Journal of Fluid Mechanics, 13, 609–632.CrossRefGoogle Scholar
  14. 14.
    Herrmann, G., & Nemat-Nasser, S. (1967). Energy considerations in the analysis of stability of nonconservative systems. In Herrmann, G. (Ed.), Dynamic stability of structures (pp. 299–308). Oxford: Pergamon Press.Google Scholar
  15. 15.
    Païdoussis, M. P., & Deksnis, E. B. (1970). Articulated models of cantilevers conveying fluid: The study of paradox. Journal of Mechanical Engineering Sciences, 12, 288–300.CrossRefGoogle Scholar
  16. 16.
    Herrmann, G., & Nemat-Nasser, S. (1965). Energy considerations in the analysis of stability of nonconservative structural systems. Technical Report 65(5). Northwestern University, Evanston, IL.Google Scholar
  17. 17.
    Langthjem, M. (1994). On the influence of damping in a problem of dynamic stability optimization. Structural Optimization, 7, 227–236.CrossRefGoogle Scholar
  18. 18.
    Nemat-Nasser, S., & Herrmann, G. (1966). On the stability of equilibrium of continuous systems. Ingenieur-Archiv, 35, 17–24.CrossRefGoogle Scholar
  19. 19.
    Semler, C., Alighanbari, H., & Païdoussis, M. P. (1998). A physical explanation of the destabilizing effect of damping. Journal of Applied Mechanics, 65, 642–648.CrossRefGoogle Scholar
  20. 20.
    Langthjem, M. A., Morita, H., Nakamura, T., & Nakano, M. (1994). A flexible rod in annular leakage flow: Influence of turbulence and equilibrium offset, and analysis of instability mechanism. Journal of Fluids and Structures, 22, 617–645.CrossRefGoogle Scholar
  21. 21.
    Langthjem, M. A., & Sugiyama, Y. (1999). Vibration and stability analysis of cantilevered two-pipe system conveying different fluids. Journal of Fluids and Structures, 13, 251–268.CrossRefGoogle Scholar
  22. 22.
    Sugiyama, Y., & Langthjem, M. A. (2007). Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems. International Journal of Non-Linear Mechanics, 42, 132–145.CrossRefGoogle Scholar
  23. 23.
    Wolfram, S. (1991). Mathematica: A system for doing mathematics by computer. Boston: Addison-Wesley.zbMATHGoogle Scholar
  24. 24.
    Herrmann, G., & Jong, I.-C. (1965). On the destabilizing effect of damping in nonconservative elastic systems. Journal of Applied Mechanics, 32, 592–597.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Junger, M. C., & Feit, D. (1993). Sound, structures, and their interaction. New York: Acoustical Society of America.zbMATHGoogle Scholar
  26. 26.
    Bolotin, V. V., & Zhinzher, N. I. (1969). Effects of damping on stability of elastic systems subjected to nonconservative forces. International Journal of Solids and Structures, 5, 965–989.CrossRefGoogle Scholar
  27. 27.
    Sugiyama, Y., Katayama, K., & Kinoi, S. (1995). Flutter of cantilevers under rocket thrust. Journal of Aerospace Engineering, 8, 9–15.CrossRefGoogle Scholar
  28. 28.
    Sugiyama, Y., Matsuike, J., Ryu, B.-J., Katayama, K., Kinoi, S., & Enomoto, N. (1995). Effect of concentrated mass on the stability of cantilevers under rocket thrust. AIAA Journal, 33, 499–503.CrossRefGoogle Scholar
  29. 29.
    Lighthill, M. J. (1978). Waves in fluids. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  30. 30.
    Chen, S. S. (1981). Fluid damping for circular cylindrical structures. Nuclear Engineering and Design, 63, 81–100.CrossRefGoogle Scholar
  31. 31.
    Païdoussis, M. P. (1998). Fluid-structure interactions-slender structures and axial flow (Vol. 1). London: Academic Press.Google Scholar
  32. 32.
    Bishop, R. E. D., & Fawzy, I. (1976). Free and forced oscillation of a vertical tube containing a flowing fluid. Philosophical Transactions of the Royal Society of London, A, 284, 1–47.CrossRefGoogle Scholar
  33. 33.
    Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic stability. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  34. 34.
    Roorda, J., & Nemat-Nasser, S. (1967). An energy method for stability analysis of nonlinear, nonconservative systems. AIAA Journal, 5, 1262–1268.CrossRefGoogle Scholar
  35. 35.
    Bolotin, V. V., Grishko, A. A., & Panov, M Yu. (2002). Effect of damping on the postcritical behavior of autonomous non-conservative systems. International Journal of Nonlinear Mechanics, 37, 1163–1179.CrossRefGoogle Scholar
  36. 36.
    Kounadis, A. N. (1997). Non-potential dissipative systems exhibiting periodic attractors in regions of divergence. Chaos, Solitons & Fractals, 8, 583–612.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Kounadis, A. N. (2006). Hamiltonian weakly damped autonomous systems exhibiting periodic attractors. Zeitschrift für Angewandte Mathematik und Physik, 57, 324–350.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yoshihiko Sugiyama
    • 1
    Email author
  • Mikael A. Langthjem
    • 2
  • Kazuo Katayama
    • 3
  1. 1.Small Spacecraft Systems Research Center, Osaka Prefecture UniversitySakaiJapan
  2. 2.Department of Mechanical Systems EngineeringYamagata UniversityYonezawaJapan
  3. 3.Daicel CorporationTatsunoJapan

Personalised recommendations