Pinned-Pinned Columns under a Pulsating Axial Force

  • Yoshihiko SugiyamaEmail author
  • Mikael A. Langthjem
  • Kazuo Katayama
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 255)


There are many examples of physical systems, including structural systems, that are subject to time-varying excitations. One example is a string subjected to a pulsating axial tension. The string loses its stability by so-called parametric resonance, which occurs primarily when the excitation frequency \( \theta \) is twice the string’s eigenfrequency \( \omega_{\text{o}} \), that is, \( \theta = 2\omega_{\text{o}} \).


  1. 1.
    Melde, F. (1860). Über die Erregung stehender Wellen eines fadenförmigen Körpers. Annalen der Physik und Chemie, 109, 193–215.CrossRefGoogle Scholar
  2. 2.
    Rayleigh, J. W. S. (1945). The Theory of Sound (Vol. I). New York: Dover Publications, Inc.zbMATHGoogle Scholar
  3. 3.
    Bolotin, V. V. (1964). The dynamic stability of elastic systems. San Francisco: Holden-Day Inc.zbMATHGoogle Scholar
  4. 4.
    Beliaev, N. M. (1924). Stability of prismatic rods subjected to variable longitudinal forces. In Collection of Papers; Engineering Constructions and Structural Mechanics, Leningrad (p. 149, in Russian).Google Scholar
  5. 5.
    Nishino, K. (1939). Vibrational stability of a bar under periodic longitudinal forces. Journal of the Aeronautical Research Institute, Tokyo Imperial University, 176, p. 93 (in Japanese).Google Scholar
  6. 6.
    Sugiyama, Y., Iwatsubo, T., & Ishihara, K. (1972). On nonsteady-state motions in the vicinity of the boundaries of the principal region of dynamic instability. Report of the Faculty of Engineering, Tottori University, 2(2), 28–37.Google Scholar
  7. 7.
    Somerset, J. H., & Evan-Iwanowski, R. M. (1964). Experiments on parametric instability of columns, development of theoretical and applied mechanics. In South-Eastern Conference on Theoretical and Applied Mechanics.Google Scholar
  8. 8.
    Evan-Iwanowski, R. M. (1965). On the parametric response of structures. Applied Mechanics Review, 18(9), p. 699.Google Scholar
  9. 9.
    Sugiyama, Y., Kawagoe, H., & Iwatsubo, T. (1972). On instability criteria in digital simulation of parametric instability. Reports of the Faculty of Engineering, Tottori University, 3(1), 1–9.Google Scholar
  10. 10.
    Iwatsubo, T., Sugiyama, Y., & Ishihara, K. (1972). Stability and non-stationary vibration of columns under periodic loads. Journal of Sound and Vibration, 23(2), 245–257.CrossRefGoogle Scholar
  11. 11.
    Song, Z., Chen, Z., Li, W., & Chai, Y. (2016). Parametric instability analysis of a rotating shaft subjected to a periodic axial force by using discrete singular convolution method. Meccanica, 51(6), 1–15.zbMATHGoogle Scholar
  12. 12.
    Huang, Y., Liu, A., Pi, Y., Lu, H., & Gao, W. (2017). Assessment of lateral dynamic instability of columns under an arbitrary axial load owing to parametric resonance. Journal of Sound and Vibration, 395, 272–293.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yoshihiko Sugiyama
    • 1
    Email author
  • Mikael A. Langthjem
    • 2
  • Kazuo Katayama
    • 3
  1. 1.Small Spacecraft Systems Research CenterOsaka Prefecture UniversitySakaiJapan
  2. 2.Department of Mechanical Systems EngineeringYamagata UniversityYonezawaJapan
  3. 3.Daicel CorporationTatsunoJapan

Personalised recommendations