Advertisement

Columns under a Rocket-Based Subtangential Follower Force

  • Yoshihiko SugiyamaEmail author
  • Mikael A. Langthjem
  • Kazuo Katayama
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 255)

Abstract

The stability of columns under conservative forces has been the basis of structural stability theory, while the stability of columns under nonconservative forces has been only of recent interest in regard to structural stability. The stability of columns under the combined action of conservative and nonconservative forces has been an interesting topic in the field of structural stability problems, as it bridges the gap between the stability with conservative forces and the stability with nonconservative forces [1, 2, 3, 4, 5, 6, 7, 8].

References

  1. 1.
    Leipholz, H. (1962). Die Knicklast des eiseitig eigespannten Stabes mit gleichmäßig verteiler, tangentialer Längsbelastung. Zeitschrift für Angewandte Mathematik und Physik, 6, 581–589.CrossRefGoogle Scholar
  2. 2.
    Sugiyama, Y., Katayama, T., & Sekiya, T. (1969). Studies on nonconservative problems of instability of columns by difference method. In Proceedings of the 19th Japan National Congress for Applied Mechanics, 1969 (pp. 23–31). Tokyo: The University of Tokyo Press.Google Scholar
  3. 3.
    McGill, D. J. (1971). Column instability under weight and follower loads. Journal of the Engineering Mechanics Division, American Society of Civil Engineers, 97, 629–635.Google Scholar
  4. 4.
    Sugiyama, Y., Kawagoe, H., & Tanimoto, Y. (1974). Stability of elastic columns subjected to distributed sub-tangential follower forces. Reports of the Faculty of Engineering (vol. 5-1, pp. 1–10). Tottori University.Google Scholar
  5. 5.
    Sugiyama, Y., & Kawagoe, H. (1975). Vibration and stability of elastic columns under the combined action of uniformly distributed vertical and tangential forces. Journal of Sound and Vibration, 38(3), 341–355.CrossRefGoogle Scholar
  6. 6.
    Celep, Z. (1977). On the vibration and stability of Beck’s column subjected to vertical and follower forces. Zeitschrift für Angewandte Mathematik und Mechanik, 57, 555–557.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Leipholz, H. (1980). Stability of Elastic Systems. Alphen aan den Rijn: Sijthoff & Noordhoff.zbMATHGoogle Scholar
  8. 8.
    Sugiyama, Y., & Mladenov, K. A. (1983). Vibration and stability of elastic columns subjected to triangularly distributed sub-tangential forces. Journal of Sound and Vibration, 88(4), 447–457.CrossRefGoogle Scholar
  9. 9.
    Katayama, K. (1997). Experimental verification of the effect of rocket thrust on the dynamic stability of cantilevered columns. Doctoral Thesis, Department of Aerospace Engineering, Osaka Prefecture University.Google Scholar
  10. 10.
    Sugiyama, Y., Katayama, K., Kiriyama, K., & Ryu, B.-J. (2000). Experimental verification of dynamic stability of vertical cantilevered columns subjected to a sub-tangential force. Journal of Sound and Vibration, 236(2), 193–207.CrossRefGoogle Scholar
  11. 11.
    Mutyalarao, M., Bharathi, D., Narayana, K. L., & Nageswara Rao, B. (2017). How valid are Sugiyama’s experiments on follower forces? Letter to the Editor, International Journal of Non-Linear Mechanics, 93, 122–125.CrossRefGoogle Scholar
  12. 12.
    Plaut, R. H. (1975). Optimal design for stability under dissipative, gyroscopic, or circulatory loads. In A. Sawczuk, Z. Mroz (Eds.), Optimization in structural design. Berlin: Springer.CrossRefGoogle Scholar
  13. 13.
    Odeh, F., & Tadjbakhsh, I. (1975). The shape of the strongest column with a follower load. Journal of Optimization Theory and Applications, 15, 103–118.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Claudon, J. L. (1975). Characteristic curves and optimum design of two structures subjected to circulatory loads. Journal de Mécanique, 14, 531–543.zbMATHGoogle Scholar
  15. 15.
    Hanaoka, M., & Washizu, K. (1980). Optimum design of Beck’s column. Computers & Structures, 11, 473–480.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tada, Y., Seguchi, Y., & Kema, K. (1985). Shape determination of nonconservative structural systems by the inverse variational principle. Memoirs of the Faculty of Engineering (vol. 32, pp. 45–61). Kobe University.Google Scholar
  17. 17.
    Gutkowski, W., Mahrenholz, O., Pyrz, O. (1983). Minimum weight design of structures under nonconservative forces. In G. I. N. Rozvany (Ed.), Optimization of large structural systems (pp. 1087–1100). Dortrecht: Kluwer.CrossRefGoogle Scholar
  18. 18.
    Ringertz, U. T. (1994). On the design of Beck’s column. Structural Optimization, 8, 120–124.CrossRefGoogle Scholar
  19. 19.
    Langthjem, M. A., & Sugiyama, Y. (1999). Optimum design of Beck’s column with a constraint on the static buckling load. Structural Optimization, 18, 228–235.CrossRefGoogle Scholar
  20. 20.
    Langthjem, M. A., & Sugiyama, Y. (2000). Optimum design of cantilevered columns under the combined action of conservative and nonconservative loads. Part I: The undamped case, Computers & Structures, 74, 385–398.Google Scholar
  21. 21.
    Langthjem, M. A., & Sugiyama, Y. (2000). Optimum design of cantilevered columns under the combined action of conservative and nonconservative loads. Part II: The damped case, Computers & Structures, 74, 399–408.Google Scholar
  22. 22.
    Sugiyama, Y., Langthjem, M. A., Iwama, T., Kobayashi, M., Katayama, K., & Yutani, H. (2012). Shape optimization of cantilevered columns subjected to a rocket-based follower force and its experimental verification. Structural and Multidisciplinary Optimization, 46, 829–838.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yoshihiko Sugiyama
    • 1
    Email author
  • Mikael A. Langthjem
    • 2
  • Kazuo Katayama
    • 3
  1. 1.Small Spacecraft Systems Research Center, Osaka Prefecture UniversitySakaiJapan
  2. 2.Department of Mechanical Systems EngineeringYamagata UniversityYonezawaJapan
  3. 3.Daicel CorporationTatsunoJapan

Personalised recommendations