Advertisement

Joint Time and Power Allocations for Uplink Nonorthogonal Multiple Access Networks

  • Yuan Wu
  • Cheng Zhang
  • Kejie Ni
  • Jiajun Shi
  • Liping Qian
  • Liang Huang
  • Weidang Lu
  • Limin Meng
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 251)

Abstract

The rapid development of mobile Internet services has yielded tremendous traffic pressure on cellular radio access networks. Exploiting nonorthogonal multiple access (NOMA) that enables a group of mobile users (MUs) to simultaneously share a same spectrum channel for radio access provides an efficient approach to achieve the goals of ultra-high throughput and massive connectivity in future 5G network. In this paper, we propose a joint time and power allocations for uplink NOMA. We aim at minimizing the delay for transmission and the total energy consumption of all MUs when the MUs send their data to the BS, while satisfying each MU’s constrains on the transmission delay and energy consumption. Numerical results are provided to validate our proposed algorithm and the performance and advantage of our proposed joint optimization for time and power allocations for uplink NOMA.

Keywords

Nonorthogonal multiple access Radio resource management Optimization 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61572440, in part by the Zhejiang Provincial Natural Science Foundation of China under Grants LR17F010002 and LR16F010003, in part by the Young Talent Cultivation Project of Zhejiang Association for Science and Technology under Grant 2016YCGC011.

References

  1. 1.
    Ding, Z.: Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 55(2), 185–191 (2017)CrossRefGoogle Scholar
  2. 2.
    Islam, S., Avazov, N., Dobre, O., Kwak, K.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2017)CrossRefGoogle Scholar
  3. 3.
    Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., Hanzo, L.: Non-orthogonal multiple access for 5G and beyond. Proc. IEEE 105(12), 2347–2381 (2017)CrossRefGoogle Scholar
  4. 4.
    Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., Higuchi, K.: Non-orthogonal multiple access (NOMA) for cellular future radio access. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, pp. 1–5 (2013)Google Scholar
  5. 5.
    Wu, Y., Qian, L., Mao, H., Yang, X., Zhou, H., Shen, X.: Optimal power allocation and scheduling for non-orthogonal multiple access relay-assisted networks. IEEE Trans. Mob. Comput. (2018).  https://doi.org/10.1109/TMC.2018.2812722CrossRefGoogle Scholar
  6. 6.
    Lei, L., Yuan, D., Ho, C., Sun, S.: Joint optimization of power and channel allocation with non-orthogonal multiple access for 5G cellular systems. In: 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, pp. 1–6 (2015)Google Scholar
  7. 7.
    Qian, L., Wu, Y., Zhou, H., Shen, X.: Dynamic cell association for non-orthogonal multiple-access V2S networks. IEEE J. Sel. Areas Commun. 35(10), 2342–2356 (2017)CrossRefGoogle Scholar
  8. 8.
    Elbamby, M., Bennis, M., Saad, W., Debbah, M., Latva-aho, M.: Resource optimization and power allocation in in-band full duplex-enabled non-orthogonal multiple access networks. IEEE J. Sel. Areas Commun. 35(12), 2860–2873 (2017)CrossRefGoogle Scholar
  9. 9.
    Qian, L., Wu, Y., Zhou, H., Shen, X.: Joint uplink base station association and power control for small-cell networks with non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 16(9), 5567–5582 (2017)CrossRefGoogle Scholar
  10. 10.
    Shirvanimoghaddam, M., Dohler, M., Johnson, S.: Massive non-orthogonal multiple access for cellular IoT: potentials and limitations. IEEE Commun. Mag. 55(9), 55–61 (2017)CrossRefGoogle Scholar
  11. 11.
    Wu, Y., Chen, J., Qian, L., Huang, J., Shen, X.: Energy-aware cooperative traffic offloading via device-to-device cooperations: an analytical approach. IEEE Trans. Mob. Comput. 16(1), 97–114 (2017)CrossRefGoogle Scholar
  12. 12.
    Wu, Y., Qian, L., Zheng, J., Zhou, H., Shen, X.: Green-oriented traffic offloading through dual connectivity in future heterogeneous small cell networks. IEEE Commun. Mag. 56(5), 140–147 (2018)CrossRefGoogle Scholar
  13. 13.
    Wu, Y., Qian, L.: Energy-efficient NOMA-enabled traffic offloading via dual-connectivity in small-cell networks. IEEE Commun. Lett. 21(7), 1605–1608 (2017)CrossRefGoogle Scholar
  14. 14.
    Grant, M., Boyd, S., Ye, Y.: CVX: matlab software for disciplined convex programming (2009). http://cvxr.com/cvx/
  15. 15.
    Weisstein, E.: “Bisection,” from MathWorld - a wolfram web resource. http://mathworld.wolfram.com/Bisection.html
  16. 16.
    Zhang, R.: Optimal dynamic resource allocation for multi-antenna broadcasting with heterogeneous delay-constrained traffic. IEEE J. Sel. Top. Signal Process. 2(2), 243–255 (2008)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Yuan Wu
    • 1
    • 2
  • Cheng Zhang
    • 1
  • Kejie Ni
    • 1
  • Jiajun Shi
    • 1
  • Liping Qian
    • 1
  • Liang Huang
    • 1
  • Weidang Lu
    • 1
  • Limin Meng
    • 1
  1. 1.College of Information EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.State Key Laboratory of Integrated Services NetworksXidian UniversityXianChina

Personalised recommendations