Future Directions of High Repetition Rate X-Ray Free Electron Lasers

  • Mike DunneEmail author
  • Robert W. Schoenlein


A new scientific frontier opened in 2009 when the world’s first X-ray free electron laser (FEL), the Linac Coherent Light Source (LCLS) facility, began operations at SLAC National Accelerator Laboratory. The scientific start of LCLS has arguably been one of the most vigorous and successful of any new research facility, with a dramatic effect on a broad cross section of scientific fields, ranging from atomic and molecular science, ultrafast chemistry and catalysis, fluid dynamics, clean energy systems, structural biology, high energy-density science, photon science, and advanced materials [1].



This chapter describes the work of a very large number of people at the SLAC National Accelerator Laboratory, the users of LCLS, and the wider community. Use of the LCLS is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract no. DE-AC02-76SF00515.


  1. 1.
    Bostedt, C., Boutet, S., Fritz, D. M., Huang, Z., Lee, H. J., Lemke, H. T., et al. (2016). Linac Coherent Light Source: The first five years. Reviews of Modern Physics, 88(1), 015007.CrossRefGoogle Scholar
  2. 2.
    Kjær, K. S., & Gaffney, K. J. (2017). Finding intersections between electronic excited states with ultrafast X-ray scattering and spectroscopy. In Frontiers in optics 2017. Washington, D.C.: Optical Society of America.Google Scholar
  3. 3.
    Wernet, P., Kunnus, K., Josefsson, I., Rajkovic, I., Quevedo, W., Beye, M., et al. (2015). Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution. Nature, 520(7545), 78–81.CrossRefGoogle Scholar
  4. 4.
    Zhang, W., Alonso-Mori, R., Bergmann, U., Bressler, C., Chollet, M., Galler, A., et al. (2014). Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature, 509(7500), 345–348.CrossRefGoogle Scholar
  5. 5.
    Shvyd’ko, Y. (2015). Theory of angular-dispersive, imaging hard-x-ray spectrographs. Physical Review A, 91(5), 053817.CrossRefGoogle Scholar
  6. 6.
    Shvyd’ko, Y., et al. (2014). High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science. Nature Communications, 5, 4219.CrossRefGoogle Scholar
  7. 7.
    Sutter, J. P., Baron, A. Q. R., Ishikawa, T., & Yamazaki, H. (2005). Examination of Bragg backscattering from crystalline quartz. Journal of Physics and Chemistry of Solids, 66(12), 2306–2309.CrossRefGoogle Scholar
  8. 8.
    Kukura, P., McCamant, D. W., & Mathies, R. A. (2007). Femtosecond stimulated Raman spectroscopy. Annual Review of Physical Chemistry, 58, 461–488.CrossRefGoogle Scholar
  9. 9.
    Harada, Y., Tokushima, T., Horikawa, Y., Takahashi, O., Niwa, H., Kobayashi, M., et al. (2013). Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-X-ray scattering. Physical Review Letters, 111(19), 193001.CrossRefGoogle Scholar
  10. 10.
    Hennies, F., Pietzsch, A., Berglund, M., Föhlisch, A., Schmitt, T., Strocov, V., et al. (2010). Resonant inelastic scattering spectra of free molecules with vibrational resolution. Physical Review Letters, 104(19), 193002.CrossRefGoogle Scholar
  11. 11.
    Sinn, H. (2001). Spectroscopy with meV energy resolution. Journal of Physics-Condensed Matter, 13(34), 7525–7537.CrossRefGoogle Scholar
  12. 12.
    Yavas, H., et al. (2007). Sapphire analyzers for high-resolution X-ray spectroscopy. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 582(1), 149–151.CrossRefGoogle Scholar
  13. 13.
    Rumaiz, A. K., et al. (2016). First experimental feasibility study of VIPIC: A custom-made detector for X-ray speckle measurements. Journal of Synchrotron Radiation, 23, 404–409.CrossRefGoogle Scholar
  14. 14.
    Grubel, G., et al. (2007). XPCS at the European X-ray free electron laser facility. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 262(2), 357–367.CrossRefGoogle Scholar
  15. 15.
    Gutt, C., et al. (2009). Measuring temporal speckle correlations at ultrafast x-ray sources. Optics Express, 17(1), 55–61.CrossRefGoogle Scholar
  16. 16.
    Trigo, M., et al. (2013). Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nature Physics, 9(12), 790–794.CrossRefGoogle Scholar
  17. 17.
    Tamasaku, K., Ishikawa, T., & Yabashi, M. (2003). High-resolution Fourier transform x-ray spectroscopy. Applied Physics Letters, 83(15), 2994–2996.CrossRefGoogle Scholar
  18. 18.
    Neutze, R., et al. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.CrossRefGoogle Scholar
  19. 19.
    Barends, T. R. M., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.CrossRefGoogle Scholar
  20. 20.
    Coquelle, N., et al. (2017). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31.CrossRefGoogle Scholar
  21. 21.
    Tenboer, J., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346(6214), 1242–1246.CrossRefGoogle Scholar
  22. 22.
    Arnlund, D., et al. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.CrossRefGoogle Scholar
  23. 23.
    Bergh, M., et al. (2008). Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Quarterly Reviews of Biophysics, 41(3-4), 181–204.CrossRefGoogle Scholar
  24. 24.
    Huldt, G., Szoke, A., & Hajdu, J. (2003). Diffraction imaging of single particles and biomolecules. Journal of Structural Biology, 144(1-2), 219–227.CrossRefGoogle Scholar
  25. 25.
    Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., et al. (2015). The Linac Coherent Light Source single particle imaging road map. Structural Dynamics, 2(4), 041701.CrossRefGoogle Scholar
  26. 26.
    Kam, Z. (1977). Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations. Macromolecules, 10(5), 927–934.CrossRefGoogle Scholar
  27. 27.
    Kam, Z., Koch, M. H. J., & Bordas, J. (1981). Fluctuation X-ray-scattering from biological particles in frozen solution by using synchrotron radiation. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78(6), 3559–3562.CrossRefGoogle Scholar
  28. 28.
    Malmerberg, E., Kerfeld, C. A., & Zwart, P. H. (2015). Operational properties of fluctuation X-ray scattering data. IUCrJ, 2, 309–316.CrossRefGoogle Scholar
  29. 29.
    Saldin, D. K., Shneerson, V. L., Howells, M. R., Marchesini, S., Chapman, H. N., Bogan, M., et al. (2010). Structure of a single particle from scattering by many particles randomly oriented about an axis: Toward structure solution without crystallization? New Journal of Physics, 12, 035014.CrossRefGoogle Scholar
  30. 30.
    Hosseinizadeh, A., et al. (2014). High-resolution structure of viruses from random diffraction snapshots. Philosophical Transactions of the Royal Society B-Biological Sciences, 369(1647), 20130326.CrossRefGoogle Scholar
  31. 31.
    Dashti, A., et al. (2014). Trajectories of the ribosome as a Brownian nanomachine. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17492–17497.CrossRefGoogle Scholar
  32. 32.
    Kern, J., Tran, R., Alonso-Mori, R., Koroidov, S., Echols, N., Hattne, J., et al. (2014). Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 5, 4371.CrossRefGoogle Scholar
  33. 33.
    Kupitz, C., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.CrossRefGoogle Scholar
  34. 34.
    Huang, S., et al. (2017). Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Physical Review Letters, 119(15), 154801.CrossRefGoogle Scholar
  35. 35.
    Marinelli, A., et al. (2017). Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise. Applied Physics Letters, 111(15), 151101.CrossRefGoogle Scholar
  36. 36.
    Marcus, G., Penn, G., & Zholents, A. A. (2014). Free-electron laser design for four-wave mixing experiments with soft-X-ray pulses. Physical Review Letters, 113(2), 024801.CrossRefGoogle Scholar
  37. 37.
    Zholents, A. A., & Fawley, W. M. (2004). Proposal for intense attosecond radiation from an x-ray free-electron laser. Physical Review Letters, 92(22), 224801.CrossRefGoogle Scholar
  38. 38.
    Allaria, E., et al. (2013). Two-stage seeded soft-X-ray free-electron laser. Nature Photonics, 7(11), 913–918.CrossRefGoogle Scholar
  39. 39.
    Hemsing, E., et al. (2016). Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nature Photonics, 10(8), 512–515.CrossRefGoogle Scholar
  40. 40.
    Stupakov, G. (2009). Using the beam-Echo effect for generation of short-wavelength radiation. Physical Review Letters, 102(7), 074801.CrossRefGoogle Scholar
  41. 41.
    Ackermann, S., et al. (2013). Generation of coherent 19-and 38-nm radiation at a free-Electron laser directly seeded at 38 nm. Physical Review Letters, 111(11), 114801.CrossRefGoogle Scholar
  42. 42.
    Schneidmiller, E. A., et al. (2017). First operation of a harmonic lasing self-seeded free electron laser. Physical Review Accelerators and Beams, 20(2), 020705.CrossRefGoogle Scholar
  43. 43.
    Xiang, D., et al. (2013). Purified self-amplified spontaneous emission free-electron lasers with slippage-boosted filtering. Physical Review Special Topics-Accelerators and Beams, 16(1), 010703.CrossRefGoogle Scholar
  44. 44.
    McNeil, B. W. J., Thompson, N. R., & Dunning, D. J. (2013). Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser. Physical Review Letters, 110(13), 134802.CrossRefGoogle Scholar
  45. 45.
    Hara, T., et al. (2013). Two-colour hard X-ray free-electron laser with wide tunability. Nature Communications, 4, 2919.CrossRefGoogle Scholar
  46. 46.
    Mozzanica, A., et al. (2016). Characterization results of the JUNGFRAU full scale readout ASIC. Journal of Instrumentation, 11, C02047.CrossRefGoogle Scholar
  47. 47.
    Ramilli, M., et al. (2017). Measurements with MONCH, a 25 mu m pixel pitch hybrid pixel detector. Journal of Instrumentation, 12, C01071.CrossRefGoogle Scholar
  48. 48.
    Blaj, G., Caragiulo, P., Carini, G., Dragone, A., Haller, G., Hart, P., et al. (2016). Future of ePix detectors for high repetition rate FELs. AIP Conference Proceedings, 1741, 040012.CrossRefGoogle Scholar
  49. 49.
    Shanks, K. S., Philipp, H. T., Weiss, J. T., Becker, J., Tate, M. W., & Gruner, S. M. (2016). The high dynamic range pixel array detector (HDR-PAD): Concept and design. AIP Conference Proceedings, 1741, 040009.CrossRefGoogle Scholar
  50. 50.
    Allahgholi, A., et al. (2015). AGIPD, a high dynamic range fast detector for the European XFEL. Journal of Instrumentation, 10, C12013.CrossRefGoogle Scholar
  51. 51.
    Veale, M. C., et al. (2017). Characterisation of the high dynamic range large pixel detector (LPD) and its use at X-ray free electron laser sources. Journal of Instrumentation, 12, P12003.CrossRefGoogle Scholar
  52. 52.
    Shin, K. W., Bradford, R., Lipton, R., Deptuch, G., Fahim, F., Madden, T., et al. (2015). Optimizing floating guard ring designs for FASPAX N-in-P silicon sensors. In 2015 IEEE nuclear science symposium and medical imaging conference (Nss/Mic) (pp. 1–8). New York: IEEE.Google Scholar
  53. 53.
    Deptuch, G. W., et al. (2014). Design and tests of the vertically integrated photon imaging chip. IEEE Transactions on Nuclear Science, 61(1), 663–674.CrossRefGoogle Scholar
  54. 54.
    Stan, C. A., et al. (2016). Liquid explosions induced by X-ray laser pulses. Nature Physics, 12(10), 966–971.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations