X-Ray Free Electron Lasers and Their Applications

  • Sébastien BoutetEmail author
  • Makina Yabashi


X-ray free electron lasers (FELs) represent the latest generation of X-ray sources, with unique properties and capabilities that present novel opportunities in the study of matter in unique forms as well as the study of interactions and dynamics on ultrafast timescales. For the purpose of this book focused on the use of X-ray FEL beams for the study of biological materials, the story begins with the availability of these novel sources to the scientific community as user facilities. Let us however take a quick step back and provide a brief historical background on what has led to the advent of X-ray FEL sources. This will be followed by a short description of the principles of operation of X-ray FELs and the breadth of their scientific use.


  1. 1.
    Abad-Zapatero, C. (2012, May). Notes of a protein crystallographer: On the high-resolution structure of the PDB growth rate. Acta Crystallographica Section D, 68(5), 613–617.CrossRefGoogle Scholar
  2. 2.
    Ackermann, W., et al. (2007). Operation of a free electron laser from the extreme ultraviolet to the water window. Nature Photonics, 1, 336.CrossRefGoogle Scholar
  3. 3.
    Ahrens, T. J. (2013). Mineral physics & crystallography: A handbook of physical constants. Washington, DC: American Geophysical Union.Google Scholar
  4. 4.
    Allaria, E., Appio, R., Badano, L., Barletta, W. A., Bassanese, S., Biedron, S. G., et al. (2012). Highly coherent and stable pulses from the Fermi seeded free-electron laser in the extreme ultraviolet. Nature Photonics, 6, 699.CrossRefGoogle Scholar
  5. 5.
    Als-Nielsen, J., & McMorrow, D. (2011). Elements of modern X-ray physics. New York: Wiley.CrossRefGoogle Scholar
  6. 6.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.CrossRefGoogle Scholar
  7. 7.
    Bilderback, D. H., Elleaume, P., & Weckert, E. (2005). Review of third and next generation synchrotron light sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(9), S773.CrossRefGoogle Scholar
  8. 8.
    Bionta, M. R., Hartmann, N., Weaver, M., French, D., Nicholson, D. J., Cryan, J. P., et al. (2014). Spectral encoding method for measuring the relative arrival time between X-ray/optical pulses. Review of Scientific Instruments, 85(8), 083116.CrossRefGoogle Scholar
  9. 9.
    Blaj, G., Caragiulo, P., Carini, G., Carron, S., Dragone, A., Freytag, D., et al. (2015, May). X-ray detectors at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22(3), 577–583.CrossRefGoogle Scholar
  10. 10.
    Bostedt, C., Boutet, S., Fritz, D. M., Huang, Z., Lee, H. J., Lemke, H. T., et al. (2016, March). Linac coherent light source: The first five years. Reviews of Modern Physics, 88, 015007.Google Scholar
  11. 11.
    Briggs, R., Gorman, M. G., Coleman, A. L., McWilliams, R. S., McBride, E. E., McGonegle, D., et al. (2017, January). Ultrafast X-ray diffraction studies of the phase transitions and equation of state of scandium shock compressed to 82 GPa. Physical Review Letters, 118, 025501.Google Scholar
  12. 12.
    Canton, S. E., Kjar, K. S., Vanko, G., van Driel, T. B., Adachi, S., Bordage, A., et al. (2015). Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses. Nature Communications, 6, 6359.CrossRefGoogle Scholar
  13. 13.
    Clark, J. N., Beitra, L., Xiong, G., Higginbotham, A., Fritz, D. M., Lemke, H. T., et al. (2013). Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science, 341(6141), 56–59.CrossRefGoogle Scholar
  14. 14.
    Cocco, D., Moeller, S., Ploenjes, E., & Zangrando, M. (2018, January). PhotonDiag2017 workshop: Introductory overview. Journal of Synchrotron Radiation, 25(1), 1–2.CrossRefGoogle Scholar
  15. 15.
    Deacon, D. A. G., Elias, L. R., Madey, J. M. J., Ramian, G. J., Schwettman, H. A., & Smith, T. I. (1977). First operation of a free-electron laser. Physical Review Letters, 38, 892.CrossRefGoogle Scholar
  16. 16.
    Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an Ångstrom-wavelength free-electron laser. Nature Photonics, 4(9), 641–647.CrossRefGoogle Scholar
  17. 17.
    Ferguson, K. R., Bucher, M., Gorkhover, T., Boutet, S., Fukuzawa, H., Koglin, J. E., et al. (2016). Transient lattice contraction in the solid-to-plasma transition. Science Advances, 2(1), e1500837.CrossRefGoogle Scholar
  18. 18.
    Fletcher, L. B., Lee, H. J., Dppner, T., Galtier, E., Nagler, B., Heimann, P., et al. (2015). Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nature Photonics, 9, 274–279.CrossRefGoogle Scholar
  19. 19.
    Fritz, D. M., Cammarata, M., Aymeric, R., Caronna, C., Lemke, H. T., Zhu, D., et al. (2011). A single-shot intensity-position monitor for hard X-ray FEL sources. Proceedings of SPIE, 8140:8140-1–8140–6.Google Scholar
  20. 20.
    Fuchs, M., Trigo, M., Chen, J., Ghimire, S., Shwartz, S., Kozina, M., et al. (2015). Anomalous nonlinear X-ray Compton scattering. Nature Physics, 11, 964–970.CrossRefGoogle Scholar
  21. 21.
    Ghimire, S., Fuchs, M., Hastings, J., Herrmann, S. C., Inubushi, Y., Pines, J., et al. (2016, October). Nonsequential two-photon absorption from the k shell in solid zirconium. Physical Review A, 94, 043418.Google Scholar
  22. 22.
    Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Milathianaki, D., et al. (2015). Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nature Communications, 6, 8191.CrossRefGoogle Scholar
  23. 23.
    Gutt, C., Wochner, P., Fischer, B., Conrad, H., Castro-Colin, M., Lee, S., et al. (2012). Single shot spatial and temporal coherence properties of the SLAC linac coherent light source in the hard X-ray regime. Physical Review Letters, 108(2):024801.CrossRefGoogle Scholar
  24. 24.
    Hara, T., Inubushi, Y., Katayama, T., Sato, T., Tanaka, H., Tanaka, T., et al. (2013). Two-colour hard X-ray free-electron laser with wide tunability. Nature Communications, 4, 2919.CrossRefGoogle Scholar
  25. 25.
    Harmand, M., Coffee, R., Bionta, M. R., Chollet, M., French, D., Zhu, D., et al. (2013). Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nature Photonics, 7(3), 215–218.CrossRefGoogle Scholar
  26. 26.
    Hecht, E. (2002). Optics. Reading, MA: Addison-Wesley.Google Scholar
  27. 27.
    Huang, Z., & Kim, K.-J. (2007). A review of X-ray free-electron laser theory. Physical Review Special Topics – Accelerators and Beams, 10, 034801.CrossRefGoogle Scholar
  28. 28.
    Inoue, I., Inubushi, Y., Sato, T., Tono, K., Katayama, T., Kameshima, T., et al. (2016). Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme. Proceedings of the National Academy of Sciences of the United States of America, 113, 1492.CrossRefGoogle Scholar
  29. 29.
    Inoue, I., Tono, K., Joti, Y., Kameshima, T., Ogawa, K., Shinohara, Y., et al. (2015). Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended young’s experiment. IUCrJ, 2, 620.CrossRefGoogle Scholar
  30. 30.
    Inubushi, Y., Tono, K., Togashi, T., Sato, T., Hatsui, T., Kameshima, T., et al. (2012). Determination of the pulse duration of an X-ray free electron laser using highly resolved single-shot spectra. Physical Review Letters, 109, 144801.CrossRefGoogle Scholar
  31. 31.
    Ishikawa, T., Aoyagi, H., Asaka, T., Asano, Y., Azumi, N., Bizen, T., et al. (2012). A compact X-ray free-electron laser emitting in the sub-Ångström region. Nature Photonics, 6, 540.CrossRefGoogle Scholar
  32. 32.
    IUCr, & Wilson, A. J. C. (2016). International tables for crystallography. Dordrecht: Kluwer Academic Publishers.Google Scholar
  33. 33.
    Jiang, M. P., Trigo, M., Savić, I., Fahy, S., Murray, D., Bray, C., et al. (2016, July). The origin of incipient ferroelectricity in lead telluride. Nature Communications, 7, 12291.Google Scholar
  34. 34.
    Katayama, T., Owada, S., Togashi, T., Ogawa, K., Karvinen, P., Vartiainen, I., et al. (2016). A beam branching method for timing and spectral characterization of hard X-ray free-electron lasers. Structure and Dynamics, 3, 034301.CrossRefGoogle Scholar
  35. 35.
    Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., & Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181(4610), 662–666.CrossRefGoogle Scholar
  36. 36.
    Kim, K. H., Kim, J. G., Nozawa, S., Sato, T., Oang, K. Y., Kim, T. W., et al. (2015). Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature, 518, 385.CrossRefGoogle Scholar
  37. 37.
    Kubacka, T., Johnson, J. A., Hoffmann, M. C., Vicario, C., de Jong, S., Beaud, P., et al. (2014). Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science, 343(6177), 1333–1336.CrossRefGoogle Scholar
  38. 38.
    Lantz, G., Mansart, B., Grieger, D., Boschetto, D., Nilforoushan, N., Papalazarou, E., et al. (2017, January). Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material. Nature Communications, 8, 13917.CrossRefGoogle Scholar
  39. 39.
    Lee, S., Roseker, W., Gutt, C., Fischer, B., Conrad, H., Lehmkühler, F., et al. (2013). Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Optics Express, 21(21), 24647–24664.CrossRefGoogle Scholar
  40. 40.
    Lehmann, C. S., Picón, A., Bostedt, C., Rudenko, A., Marinelli, A., Moonshiram, D., et al. (2016, July). Ultrafast X-ray-induced nuclear dynamics in diatomic molecules using femtosecond X-ray-pump˘X-ray-probe spectroscopy. Physical Review A, 94, 013426.Google Scholar
  41. 41.
    Lehmkühler, F., Gutt, C., Fischer, B., Schroer, M. A., Sikorski, M., Song, S., et al. (2014). Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime. Scientific Reports, 4, 5234.CrossRefGoogle Scholar
  42. 42.
    Lehmkühler, F., Kwaśniewski, P., Roseker, W., Fischer, B., Schroer, M. A., Tono, K., et al. (2015). Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser. Scientific Reports, 5, 17193.CrossRefGoogle Scholar
  43. 43.
    Lemke, H. T., Kjær, K. S., Hartsock, R., van Driel, T. B., Chollet, M., Glownia, J. M., et al. (2017, May). Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. Nature Communications, 8, 15342.CrossRefGoogle Scholar
  44. 44.
    Madey, J. (1971). Stimulated emission of bremsstrahlung in a periodic magnetic field. Journal of Applied Physics, 42, 1906.CrossRefGoogle Scholar
  45. 45.
    Marinelli, A., Coffee, R., Vetter, S., Hering, P., West, G. N., Gilevich, S., et al. (2016, June). Optical shaping of X-ray free-electron lasers. Physical Review Letters, 116, 254801.Google Scholar
  46. 46.
    Marinelli, A., Ratner, D., Lutman, A. A., Turner, J., Welch, J., Decker, F.-J., et al. (2015). High-intensity double-pulse X-ray free-electron laser. Nature Communications, 6, 6369.CrossRefGoogle Scholar
  47. 47.
    Miao, J., Ishikawa, T., Robinson, I. K., & Murnane, M. M. (2015). Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science, 348(6234), 530–535.CrossRefGoogle Scholar
  48. 48.
    Milathianaki, D., Boutet, S., Williams, G. J., Higginbotham, A., Ratner, D., Gleason, A. E., et al. (2013). Femtosecond visualization of lattice dynamics in shock-compressed matter. Science, 342(6155):220–223.CrossRefGoogle Scholar
  49. 49.
    Minitti, M. P., Budarz, J. M., Kirrander, A., Robinson, J. S., Ratner, D., Lane, T. J., et al. (2015, June). Imaging molecular motion: Femtosecond X-ray scattering of an electrocyclic chemical reaction. Physical Review Letters, 114, 255501.Google Scholar
  50. 50.
    Mitzner, R., Siemer, B., Neeb, M., Noll, T., Siewert, F., Roling, S., et al. (2008). Spatio-temporal coherence of free electron laser pulses in the soft X-ray regime. Optics Express, 16(24), 19909.CrossRefGoogle Scholar
  51. 51.
    Murphy, J. B., & Pellegrini, C. (1990). Introduction to the physics of the free electron laser. Amsterdam: North-Holland.Google Scholar
  52. 52.
    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.CrossRefGoogle Scholar
  53. 53.
    Ostrom, H., Oberg, H., Xin, H., LaRue, J., Beye, M., Dell’Angela, M., et al. (2015). Probing the transition state region in catalytic CO oxidation on RU. Science, 347(6225), 978–982.CrossRefGoogle Scholar
  54. 54.
    Pellegrini, C. (2012). The history of X-ray free-electron lasers. European Physical Journal H, 37(5), 659–708.CrossRefGoogle Scholar
  55. 55.
    Pellegrini, C., Marinelli, A., & Reiche, S. (2016, March). The physics of X-ray free-electron lasers. Reviews of Modern Physics, 88, 015006.Google Scholar
  56. 56.
    Prince, K. C., Allaria, E., Callegari, C., Cucini, R., De Ninno, G., Di Mitri, S., et al. (2016). Coherent control with a short-wavelength free-electron laser. Nature Photonics, 10, 176–179.CrossRefGoogle Scholar
  57. 57.
    Rohringer, N., Ryan, D., London, R. A., Purvis, M., Albert, F., Dunn, J., et al. (2012). Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature, 481(7382), 488–491.CrossRefGoogle Scholar
  58. 58.
    Ruiz-Lopez, M., Faenov, A., Pikuz, T., Ozaki, N., Mitrofanov, A., Albertazzi, B., et al. (2017, January). Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis. Journal of Synchrotron Radiation, 24(1), 196–204.CrossRefGoogle Scholar
  59. 59.
    Saldin, E. L., Schneidmiller, E. A., & Yurkov, M. V. (2000). The physics of free electron lasers. Berlin: Springer.CrossRefGoogle Scholar
  60. 60.
    Schmüser, P., Dohlus, M., Rossbach, J., & Behrens, C. (2014). Free-electron lasers in the ultraviolet and X-ray regime: Physical principles, experimental results, technical realization. Springer Tracts in Modern Physics. Cham: Springer.Google Scholar
  61. 61.
    Shintake, T., Tanaka, H., Hara, T., Tanaka, T., Togawa, K., Yabashi, M., et al. (2008). A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nature Photonics, 2(9), 555–559.CrossRefGoogle Scholar
  62. 62.
    Shpyrko, O. G. (2014, September). X-ray photon correlation spectroscopy. Journal of Synchrotron Radiation, 21(5), 1057–1064.CrossRefGoogle Scholar
  63. 63.
    Swinburne, T. D., Glavicic, M. G., Rahman, K. M., Jones, N. G., Coakley, J., Eakins, D. E., et al. (2016, April). Picosecond dynamics of a shock-driven displacive phase transformation in Zr. Physical Review B, 93, 144119.Google Scholar
  64. 64.
    Tamasaku, K., Shigemasa, E., Inubushi, Y., Katayama, T., Sawada, K., Yumoto, H., et al. (2014). X-ray two-photon absorption competing against single and sequential multiphoton processes. Nature Photonics, 8, 313.CrossRefGoogle Scholar
  65. 65.
    Tiedtke, K., Azima, A., von Bargen, N., Bittner, L., Bonfigt, S., Düsterer, S., et al. (2009). The soft X-ray free-electron laser flash at DESY: Beamlines, diagnostics and end-stations. New Journal of Physics, 11(2), 023029.CrossRefGoogle Scholar
  66. 66.
    Tono, K., Togashi, T., Inubushi, Y., Sato, T., Katayama, T., Ogawa, K., et al. (2013). Beamline, experimental stations and photon beam diagnostics for the hard X-ray free electron laser of SACLA. New Journal of Physics, 15(8), 083035.CrossRefGoogle Scholar
  67. 67.
    Tono, K., Togashi, T., Inubushi, Y., Sato, T., Katayama, T., Ogawa, K., et al. (2013). Beamline for X-ray free electron laser of SACLA. New Journal of Physics, 12, 083035.CrossRefGoogle Scholar
  68. 68.
    Trigo, M., Fuchs, M., Chen, J., Jiang, M. P., Cammarata, M., Fahy, S., et al. (2013). Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nature Physics, 9(12), 790–794.CrossRefGoogle Scholar
  69. 69.
    Ullrich, J., Rudenko, A., & Moshammer, R. (2012). Free-electron lasers: New avenues in molecular physics and photochemistry. Annual Review of Physical Chemistry, 63(1), 635–660. PMID: 22404584.CrossRefGoogle Scholar
  70. 70.
    Usenko, S., Przystawik, A., Jakob, M. A., Lazzarino, L. L., Brenner, G., Toleikis, S., et al. (2017). Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser. Nature Communications, 8, 15626.CrossRefGoogle Scholar
  71. 71.
    Vartanyants, I. A., Singer, A., Mancuso, A. P., Yefanov, O. M., Sakdinawat, A., Liu, Y., et al. (2011). Coherence properties of individual femtosecond pulses of an X-ray free-electron laser. Physical Review Letters, 107(14), 144801.CrossRefGoogle Scholar
  72. 72.
    Vinko, S. M., Ciricosta, O., Cho, B. I., Engelhorn, K., Chung, H. K., Brown, C. R., et al. (2012). Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature, 482(7383), 59–62.CrossRefGoogle Scholar
  73. 73.
    Warren, B. E. (1969). X-ray diffraction. Addison-Wesley series in metallurgy and materials engineering. Mineola, NY: Dover Publications.Google Scholar
  74. 74.
    Yabashi, M., Tanaka, H., Tanaka, T., Tomizawa, H., Togashi, T., Nagasono, M., et al. (2013). Compact XFEL and AMO sciences: SACLA and SCSS. Journal of Physics B, 46(16), 164001.CrossRefGoogle Scholar
  75. 75.
    Yoneda, H., Inubushi, Y., Nagamine, K., Michine, Y., Ohashi, H., Yumoto, H., et al. (2015). Atomic inner-shell laser at 1.5-angstrom wavelength pumped by an X-ray free-electron laser. Nature, 524, 446–449.CrossRefGoogle Scholar
  76. 76.
    Zastrau, U., Gamboa, E. J., Kraus, D., Benage, J. F., Drake, R. P., Efthimion, P., et al. (2016). Tracking the density evolution in counter-propagating shock waves using imaging X-ray scattering. Applied Physics Letters, 109(3), 031108.CrossRefGoogle Scholar
  77. 77.
    Zhang, W., Alonso-Mori, R., Bergmann, U., Bressler, C., Chollet, M., Galler, A., et al. (2014). Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature, 509(7500), 345–348.CrossRefGoogle Scholar
  78. 78.
    Zhu, D., Cammarata, M., Feldkamp, J., Fritz, D. M., Hastings, J., Lee, S., et al. (2013). Design and operation of a hard X-ray transmissive single-shot spectrometer at LCLS. Journal of Physics Conference Series, 425(5), 052033.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.RIKEN Spring-8 CenterSayo-gunJapan

Personalised recommendations