Advertisement

Functional Foods as Source of Bioactive Principles: Some Marked Examples

  • Adriana Campos
  • Elisa Brasili
  • Camile Cecconi Cechinel-Zanchett
  • Valdir Cechinel Filho
Chapter

Abstract

Functional foods are those that have a beneficial effect on health beyond the basic function of nutrition, helping to promote better health conditions and to reduce the risk of various diseases. This concept was created in Japan in the 1980s and is widely used around the world. The regulation of these products is made by different authorities and has not been defined yet in many countries. The field of food production has increased and changed considerably in the last decades, since the consumers believe that foods, besides satisfy hunger and to provide necessary nutrients for humans, also contribute directly to improve their health conditions. The present chapter will focus with marked examples the main categories of functional foods and respective therapeutic potential (cardioprotective, hepatoprotective, hypolipidemic, antioxidant, anticancer, anti-inflammatory properties, etc.) as well as the active principles responsible for the medicinal properties (flavonoids, alkaloids, terpenes, etc.), including curcuma, garlic, olive oil, grape, broccoli, and probiotic, among others.

Keywords

Functional foods Nutrients Health conditions Therapeutic potential Active principles 

Abbreviations

ABG

Aged black garlic

AChE

Acetylcholinesterase

AGE

Aged garlic extracts

AK

Autophosphorylation-activated protein kinase

AP-1

Protein-1

ATP

Adenosine triphosphate

BDMCur

Bisdemethoxycurcumin

CAT

Catalase

CCur

Cyclocurcumin

CDPK

Ca2+ -dependent protein kinase

COX-2

Cyclooxygenase-2

CREB

CAMP-response element-binding protein

CVD

Cardiovascular disease

DADS

Diallyl disulfide

DHA

Docosahexaenoic acid

DMCur

Demethoxycurcumin

DPA

Docosapentaenoic acid

DPPH

2,2-Diphenyl-1-picrylhydrazyl

DAS

Diallyl sulfide

DATS

Diallyl trisulfide

DM

Diabetes mellitus

EC

Epicatechin

EGC

Epigallocatechin

EGCG

Epigallocatechin gallate

EGFR

Epidermal growth factor receptor

EPA

Eicosapentaenoic acid

EVOO

Extra virgin olive oil

FDA

Food and Drug Administration

FFDCA

Federal Food, Drug, and Cosmetic Act

GRAS

Generally recognized as safe

GR

Glutathione reductase

GPx

Glutathione peroxidase

GST

Glutathione- S -transferase

GSH

Reduced glutathione

HDL

High-density lipoprotein

HO-1

Heme-oxygenase 1

IFG

Impaired fasting glucose

IFN-γ

Interferon-γ

IGF

Insulin-like growth factor

IkB

Inhibitory factor I-kappa B kinase

iNOS

Inducible nitric oxide synthase

IRAK

IL-1 receptor-associated kinase

JAK

Janus kinases (JAK) through inhibition of

LDL

Low-density lipoprotein

LPa

Lipoprotein A

MAP

Mitogen-activated protein

MAPKs

Mitogen-activated protein kinases

MCP

Monocyte chemoattractant protein

MIC

Minimum inhibitory concentration

MDA-MB-231

Metastatic process in human breast cancer cells

MMPs

Matrix metalloproteinases

NF-kB

Nuclear factor-kappa B

NF-jB

Nuclear factor-jB

Nrf2

Nuclear factor erythroid-derived 2

NQO1

NAD(P)H:quinone oxido-reductase 1

PhK

Phosphorylase kinase

PUFAs

Polyunsaturated fatty acids

ROS

Reactive oxygen species

SAC

S-allylcysteine

SAMC

S-allylmercaptocysteine

SCFA

Short-chain fatty acids

SIRT

Silent information regulator

SOD

Superoxide dismutase

TAG

Triacylglycerols

T2DM

Type2 diabetes mellitus

TNF-α

Tumor necrosis factor

USA

United States of America

US

United States

USDA

US Department of Agriculture

USDHHS

US Department of Health and Human Services

VLDL

Very-low-density lipoprotein

γ-GCL

γ-glutamyl-cysteine ligase

References

  1. Ahmad N, Fazal H, Abbasi BH et al (2012) Biological role of Piper nigrum L. (black pepper): a review. Asian Pac J Trop Biomed 2(3):1–10Google Scholar
  2. Ahmadi N, Nabavi V, Hajsadeghi F et al (2013) Aged garlic extract with supplement is associated with increase in brown adipose, decrease in white adipose tissue and predict lack of progression in coronary atherosclerosis. Int J Cardiol 168(3):2310–2314CrossRefGoogle Scholar
  3. Ahmadi F, Ghasemi-Kasman M, Ghasemi S et al (2017) Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan-alginate-STPP nanoparticles. Int J Nanomedicine 12:8545–8556CrossRefGoogle Scholar
  4. Ahmed RS, Suke SG, Seth V et al (2008) Protective effects of dietary ginger (Zingiber officinales Rosc.) on lindane-induced oxidative stress in rats. Phytother Res 22:902–906CrossRefGoogle Scholar
  5. Ak T, Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37CrossRefGoogle Scholar
  6. Al-Azzawie HF, Alhamdani MSS (2006) Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci 78(12):1371–1377CrossRefGoogle Scholar
  7. Allegri L, Rosignolo F, Mio C et al (2018) Effects of nutraceuticals on anaplastic thyroid cancer cells. J Cancer Res Clin Oncol 144(2):285–294CrossRefGoogle Scholar
  8. Alves MR, Cunha SC, Amaral JS et al (2005) Classification of PDO olive oils on the basis of their sterol composition by multivariate analysis. Anal Chim Acta 549:166–178CrossRefGoogle Scholar
  9. Amagase H (2006) Clarifying the real bioactive constituents of garlic. J Nutr 136(3):716S–725SCrossRefGoogle Scholar
  10. Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1(2):125–129CrossRefGoogle Scholar
  11. Arzati MM, Honarvar NM, Saedisomeolia A et al (2017) The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int J Endocrinol Metab 15(4):1–7Google Scholar
  12. Ashraf R, Khan RA, Ashraf I (2011) Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pak J Pharm Sci 24:565–570Google Scholar
  13. Atkin M, Laight D, Cummings MH (2016) The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabetes Complicat 30(4):723–727CrossRefGoogle Scholar
  14. Bachiega P, Salgado JM, De Carvalho JE et al (2016) Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 190(1):771–776CrossRefGoogle Scholar
  15. Bahadoran Z, Mirmiran P, Momenan AA et al (2017) Allium vegetable intakes and the incidence of cardiovascular disease, hypertension, chronic kidney disease, and type 2 diabetes in adults: a longitudinal follow-up study. J Hypertens 35(9):1909–1916CrossRefGoogle Scholar
  16. Bai Y, Wang X, Zhao S et al (2015) Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxidative Med Cell Longev 2015:1–13CrossRefGoogle Scholar
  17. Bakhouche A, Sánchez J, Beltrán-Debón R et al (2013) Phenolic characterization and geographical classification of commercial Arbequina extra-virgin olive oils produced in southern Catalonia. Food Res Int 50(1):401–408CrossRefGoogle Scholar
  18. Baliga MS, Haniadka R, Pereira MM et al (2011) Update on the chemopreventive effects of ginger and its phytochemicals. Crit Rev Food Sci Nutr 51(6):499–523CrossRefGoogle Scholar
  19. Barzegar A, Moosavi-Movahedi AA (2011) Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One 6(10):1–7CrossRefGoogle Scholar
  20. Baschali A, Tsakalidou E, Kyriacou A et al (2017) Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. Nutr Res Rev 30(1):1–24CrossRefGoogle Scholar
  21. Basnet P, Skalko-Basnet N (2011) Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 16(6):4567–4598CrossRefGoogle Scholar
  22. Battaini F, Mochly-Rosen D (2007) Happy birthday protein kinase C: past, present and future of a superfamily. Pharmacol Res 55(6):461–466CrossRefGoogle Scholar
  23. Bellassoued K, Ghrab F, Makni-Ayadi F et al (2015) Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity. Pharm Biol 53(11):1699–1709CrossRefGoogle Scholar
  24. Beltz LA, Bayer DK, Moss AL et al (2006) Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem 6(5):389–406CrossRefGoogle Scholar
  25. Bertelli AA, Das DK (2009) Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 54(6):468–476CrossRefGoogle Scholar
  26. Bettuzzi S, Brausi M, Rizzi F et al (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66(2):1234–1240CrossRefGoogle Scholar
  27. Bhattacharya S, Gachhui R, Sil PC (2013) Effect of kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem Toxicol 60:328–340CrossRefGoogle Scholar
  28. Bhattacharya D, Bhattacharya S, Patra MM et al (2016) Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens. Curr Microbiol 73(6):885–896CrossRefGoogle Scholar
  29. Bhattacharya D, Ghosh D, Bhattacharya S et al (2018) Antibacterial activity of polyphenolic fraction of kombucha against Vibrio cholerae: targeting cell membrane. Lett Appl Microbiol 66(2):145–152CrossRefGoogle Scholar
  30. Bogani P, Galli C, Villa M et al (2007) Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis 190(1):181–186CrossRefGoogle Scholar
  31. Brasili E, Cechinel-Filho V (2017) Metabolomics of cancer cell cultures to assess the effects of dietary phytochemicals. Crit Rev Food Sci Nutr 57(7):1328–1339CrossRefGoogle Scholar
  32. Brenes M, Hidalgo FJ, García A et al (2000) Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil. J Am Oil Chem Soc 77(7):715–720CrossRefGoogle Scholar
  33. Butt MS, Sultan MT (2011) Ginger and its health claims: molecular aspects. Crit Rev Food Sci Nutr 51(5):383–393CrossRefGoogle Scholar
  34. Butt MS, Pasha I, Sultan MT et al (2013) Black pepper and health claims: a comprehensive treatise. Crit Rev Food Sci Nutr 53(9):875–886CrossRefGoogle Scholar
  35. Calder PC (2012) The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol Nutr Food Res 56(7):1073–1080CrossRefGoogle Scholar
  36. Cao H, Hininger-Favier I, Kelly MA et al (2007) Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J Agric Food Chem 55(25):6372–6378CrossRefGoogle Scholar
  37. Cerdó T, Ruíz A, Suárez A et al (2017) Probiotic, prebiotic, and brain development. Nutrients 9(11):1–19CrossRefGoogle Scholar
  38. Chacko SM, Thambi PT, Kuttan R et al (2010) Beneficial effects of green tea: a literature review. Chin Med 5(23):1–9Google Scholar
  39. Chakravorty S, Bhattacharya S, Chatzinotas A et al (2016) Kombucha tea fermentation: microbial and biochemical dynamics. Int J Food Microbiol 220:63–72CrossRefGoogle Scholar
  40. Chauhan S, Kodali H, Noor J et al (2017) Role of omega-3 fatty acids on lipid profile in diabetic dyslipidaemia: single blind, randomised clinical trial. J Clin Diagn Res 11(3):OC13–OC16Google Scholar
  41. Chen S, Nimick M, Cridge AG et al (2018) Anticancer potential of novel curcumin analogs towards castrate-resistant prostate cancer. Int J Oncol 52(2):579–588Google Scholar
  42. Chu YL, Ho CT, Chung JG et al (2013) Allicin induces anti-human liver cancer cells through the p53 gene modulating apoptosis and autophagy. J Agric Food Chem 61(41):9839–9848CrossRefGoogle Scholar
  43. Chuengsamarn S, Rattanamongkolgul S, Phonrat B et al (2014) Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J Nutr Biochem 25(2):144–150CrossRefGoogle Scholar
  44. Comunian TA, Chaves IE, Thomazini M et al (2017) Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid. Food Chem 237:948–956CrossRefGoogle Scholar
  45. Cooper R, Morré DJ, Morré DM (2005) Medicinal benefits of green tea: part I. Review of noncancer health benefits. J Altern Complement Med 11(3):521–528CrossRefGoogle Scholar
  46. Correa F, Buelna-Chontal M, Hernandez-Resendiz S et al (2013) Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radic Biol Med 61:119–129CrossRefGoogle Scholar
  47. Cottin SC, Sanders TA, Hall WL (2011) The differential effects of EPA and DHA on cardiovascular risk factors. Proc Nutr Soc 70:215–231CrossRefGoogle Scholar
  48. Cuadrado A, Moreno-Murciano P, Pedraza-Chaverri J (2009) The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease. Expert Opin Ther Targets 13:319–329CrossRefGoogle Scholar
  49. Dacosta C, Bao Y (2017) The role of MicroRNAs in the chemopreventive activity of sulforaphane from cruciferous vegetables. Nutrients 9(8):1–19Google Scholar
  50. Damanhouri ZA, Ahmad A (2014) A review on therapeutic potential of Piper nigrum L. (Black Pepper): the king of spices. Med Aromat Plants 3(3):1–6CrossRefGoogle Scholar
  51. De Caterina R, Liao JK, Libby P (2000) Fatty acid modulation of endothelial activation. Am J Clin Nutr 71:213s–223sCrossRefGoogle Scholar
  52. De Mejia EG, Ramirez-Mares MV, Puangpraphant S (2009) Bioactive components of tea: cancer, inflammation and behavior. Brain Behav Immun 23(6):721–731CrossRefGoogle Scholar
  53. De Roos J, De Vuyst L (2018) Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 49:115–119CrossRefGoogle Scholar
  54. Dugasani S, Pichika MR, Nadarajah VD et al (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127(2):515–520CrossRefGoogle Scholar
  55. Elbarbry F, Elrody N (2011) Potential health benefits of sulforaphane: a review of the experimental, clinical and epidemiological evidences and underlying mechanisms. J Med Plants Res 5(4):473–484Google Scholar
  56. Elnagar AY, Sylvester PW, El Sayed KA (2011) (-)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Med 77(10):1013–1019CrossRefGoogle Scholar
  57. Eng QY, Thanikachalam PV, Ramamurthy S (2018) Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 210:296–310CrossRefGoogle Scholar
  58. Ernst E (2003) Kombucha: a systematic review of the clinical evidence. Forsch Komplementarmed Klass Naturheilkd 10(2):85–87Google Scholar
  59. Escrich E, Moral R, Grau L et al (2007) Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer. Mol Nutr Food Res 51:1279–1292Google Scholar
  60. Fernandez MA, Marette A (2017) Potential health benefits of combining yogurt and fruits based on their probiotic and prebiotic properties. Adv Nutr 8(1):155S–164SCrossRefGoogle Scholar
  61. Finley JW (2003) Reduction of cancer risk by consumption of selenium-enriched plants: enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. J Med Food 6(1):19–26CrossRefGoogle Scholar
  62. Fisberg M, Machado R (2015) History of yogurt and current patterns of consumption. Nutr Rev 73(1):4–7CrossRefGoogle Scholar
  63. Franco MN, Galeano-Días T, López Ó et al (2014) Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem 163:289–298CrossRefGoogle Scholar
  64. Fu N, Wu J, Lv L et al (2015) Anti-foot-and-mouth disease virus effects of Chinese herbal kombucha in vivo. Braz J Microbiol 46(4):1245–1255CrossRefGoogle Scholar
  65. Gamboa-Gómez CI, González-Laredo RF, Gallegos-Infante JA et al (2016) Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium. Food Technol Biotechnol 54(3):367–374CrossRefGoogle Scholar
  66. Gandhy SU, Kim K, Larsen L et al (2012) Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 12:1–12CrossRefGoogle Scholar
  67. Gao SM, Yang JJ, Chen CQ et al (2012) Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res 31:27CrossRefGoogle Scholar
  68. Gebauer SK, Psota TL, Harris WS et al (2006) n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83:1526s–1535sCrossRefGoogle Scholar
  69. Gedela M, Potu KC, Gali VL et al (2016) A case of hepatotoxicity related to kombucha tea consumption. S D Med 69(1):26–28Google Scholar
  70. Geleijnse JM, Giltay EJ, Grobbee DE et al (2002) Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens 20:1493–1499CrossRefGoogle Scholar
  71. Gholampour F, Ghiasabadi FB, Owji SM et al (2017) The protective effect of hydroalcoholic extract of Ginger (Zingiber officinale Rosc.) against iron-induced functional and histological damages in rat liver and kidney. Avicenna J Phytomed 7(6):542–553Google Scholar
  72. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124CrossRefGoogle Scholar
  73. Gómez-Romero M, García-Villalba R, Carrasco-Pancorbo A et al (2012) Metabolism and bioavailability of olive oil polyphenols. In: Dimitrios B (ed) Olive oil – constituents, quality, health properties and bioconversions. InTech, Rijeka, pp 333–356Google Scholar
  74. Goulas V, Exarchou V, Troganis NA et al (2009) Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol Nutr Food Res 53(5):600–608CrossRefGoogle Scholar
  75. Gouvinhas I, Machado N, Sobreira C et al (2017) Critical review on the significance of olive phytochemicals in plant physiology and human health. Molecules 22(11):1–35CrossRefGoogle Scholar
  76. Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21(3):334–350CrossRefGoogle Scholar
  77. Granato D, Nunes DS, Barba FJ (2017) An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: a proposal. Trends Food Sci Technol 62:13–22CrossRefGoogle Scholar
  78. Greenwalt CJ, Steinkraus KH, Ledford RA (2000) Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J Food Prot 63(7):976–981CrossRefGoogle Scholar
  79. Grinevicius VMS, Kviecinski MR, Santos Mota NS et al (2016) Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells. J Ethnopharmacol 189:139–147CrossRefGoogle Scholar
  80. Grosso G, Stepaniak U, Micek A et al (2015) Association of daily coffee and tea consumption and metabolic syndrome: results from the Polish arm of the HAPIEE study. Eur J Nutr 54(7):1129–1137CrossRefGoogle Scholar
  81. Gülçin I (2005) The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nutr 56(7):491–499CrossRefGoogle Scholar
  82. Gupta V, Garg R (2009) Probiotics. Indian J Med Microbiol 27(3):202–209CrossRefGoogle Scholar
  83. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218CrossRefGoogle Scholar
  84. Håkansson A, Bränning C, Molin G et al (2012) Blueberry husks and probiotics attenuate colorectal inflammation and oncogenesis, and liver injuries in rats exposed to cycling DSS-treatment. PLoS One 7(3):1–14CrossRefGoogle Scholar
  85. Hamer M, Witte DR, Mosdøl A et al (2008) Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: The Whitehall II study. Br J Nutr 100(5):1046–1053CrossRefGoogle Scholar
  86. Han MK (2003) Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic β-cell damage. Exp Mol Med 35(2):136–139CrossRefGoogle Scholar
  87. Harris WS, Bulchandani D (2006) Why do omega-3 fatty acids lower serum triglycerides? Curr Opin Lipidol 17(4):387–393CrossRefGoogle Scholar
  88. Harris JC, Cottrell SL, Plummer S et al (2001) Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol 57(3):282–286CrossRefGoogle Scholar
  89. Harris WS, Dayspring TD, Moran TJ (2013) Omega-3 fatty acids and cardiovascular disease: new developments and applications. Postgrad Med 125(6):100–113CrossRefGoogle Scholar
  90. Hasani S, Sari AA, Heshmati A et al (2017) Physicochemical and sensory attributes assessment of functional low-fat yogurt produced by incorporation of barley bran and Lactobacillus acidophilus. Food Sci Nutr 5(4):875–880CrossRefGoogle Scholar
  91. Hasmeda M, Polya GM (1996) Inhibition of cyclic AMP-dependent protein kinase by curcumin. Phytochemistry 42(3):599–605CrossRefGoogle Scholar
  92. Hewlings SJ, Kalman DS (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):1–11CrossRefGoogle Scholar
  93. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143CrossRefGoogle Scholar
  94. Hindmarch I, Quinlan PT, Moore KL et al (1998) The effects of black tea and other beverages on aspects of cognition and psychomotor performance. Psychopharmacology 139(3):230–238CrossRefGoogle Scholar
  95. Hodzic Z, Bolock AM, Good M (2017) The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Front Pediatr 5(40):1–17Google Scholar
  96. Holbourn A, Hurdman J (2017) Kombucha: is a cup of tea good for you? BMJ Case Rep.  https://doi.org/10.1136/bcr-2017-221702
  97. Hosseini A, Hosseinzadeh H (2015) A review on the effects of Allium sativum (garlic) in metabolic syndrome. J Endocrinol Investig 38:1147–1157CrossRefGoogle Scholar
  98. Hung JY, Hsu YL, Li CT et al (2009) [6]-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J Agric Food Chem 57:9809–9816CrossRefGoogle Scholar
  99. Hwang JH, Lim SB (2014) Antioxidant and anti-inflammatory activities of broccoli florets in LPS-stimulated RAW 264.7 cells. Prev Nutr Food Sci 19(2):89–97CrossRefGoogle Scholar
  100. Inoue M, Tajima K, Mizutani M et al (2001) Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett 167:175–182CrossRefGoogle Scholar
  101. International Olive Council. Designations and definitions of olive oils. Available online: http://www.internationaloliveoil.org/. Accessed on Aug 2017
  102. Jacobson TA, Glickstein SB, Rowe JD et al (2012) Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol 6(1):5–18CrossRefGoogle Scholar
  103. Jalili-Nik M, Soltani A, Moussavi S et al (2017) Current status and future prospective of curcumin as a potential therapeutic agent in the treatment of colorectal cancer. J Cell Physiol.  https://doi.org/10.1002/jcp.26368CrossRefGoogle Scholar
  104. Jayabalan R, Subathradevi P, Marimuthu S et al (2008) Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem 109(1):227–234CrossRefGoogle Scholar
  105. Jeena K, Liju VB, Umadevi NP et al (2014) Antioxidant, anti-inflammatory and antinociceptive properties of black pepper essential oil (Piper nigrum Linn). JEOP 17:1–12Google Scholar
  106. Jeong GS, Oh GS, Pae HO et al (2006) Comparative effects of curcuminoids on endothelial heme oxygenase-1 expression: ortho-methoxy groups are essential to enhance heme oxygenase activity and protection. Exp Mol Med 38:393–400CrossRefGoogle Scholar
  107. Jeong CH, Bode AM, Pugliese A et al (2009) [6]gingerol suppresses colon cancer growth by targeting leukotriene a4 hydrolase. Cancer Res 69:5584–5591CrossRefGoogle Scholar
  108. Jolad SD, Lantz RC, Solyom AM et al (2004) Fresh organically grown ginger (Zingiber officinale): Composition and effects on LPS-induced PGE2 production. Phytochemistry 65:1937–1954CrossRefGoogle Scholar
  109. Jones GJB, Roper RL (2017) The effects of diets enriched in omega-3 polyunsaturated fatty acids on systemic vaccinia virus infection. Sci Rep 7:15999CrossRefGoogle Scholar
  110. Julie S, Jurenka M (2009) Anti-inflammatory properties of curcumin, a major constituent. Altern Med Rev 14:141–153Google Scholar
  111. Jurrmann N, Brigelius-Flohe R, Bol GF (2005) Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. J Nutr 135:1859–1864CrossRefGoogle Scholar
  112. Kailasapathy K, Chin J (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78:80–88CrossRefGoogle Scholar
  113. Karalis DG (2017) A review of clinical practice guidelines for the management of hypertriglyceridemia: a focus on high dose omega-3 fatty acids. Adv Ther 34(2):300–323CrossRefGoogle Scholar
  114. Karimi N, Roshan VD (2013) Change in adiponectin and oxidative stress after modifiable lifestyle interventions in breast cancer cases. Asian Pac J Cancer Prev 14(5):2845–2850CrossRefGoogle Scholar
  115. Karnopp AR, Oliveira KG, De Andrade EF et al (2017) Optimization of an organic yogurt on sensorial, nutritional, and functional perspectives. Food Chem 233:401–411CrossRefGoogle Scholar
  116. Karsha PV, Lakshmi OB (2010) Antibacterial activity of black pepper Piper nigrum Linn. with special reference to its mode of action on bacteria. Indian J Nat Prod Resour 1(2):213–215Google Scholar
  117. Karuppagounder V, Arumugam S, Giridharan VV et al (2017) Tiny molecule, big power: multi-target approach for curcumin in diabetic cardiomyopathy. Nutrition 34:47–54CrossRefGoogle Scholar
  118. Khan N, Mukhtar H (2008) Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 269:269–280CrossRefGoogle Scholar
  119. Khan N, Mukhtar H (2013) Tea and health: studies in humans. Curr Pharm Des 19:6141–6147CrossRefGoogle Scholar
  120. Khan M, Siddiqui M (2007) Antimicrobial activity of piper fruits. Nat Prod Radiance 6:111–113Google Scholar
  121. Khan N, Afaq F, Saleem M et al (2006) Targeting multiple signaling pathways by green tea polyphenol (–)-epigallocatechin-3-gallate. Cancer Res 66(5):2500–2505CrossRefGoogle Scholar
  122. Khanal P, Oh WK, Yun HJ et al (2011) p-HPEA-EDA, a phenolic compound of virgin olive oil, activates AMP-activated protein kinase to inhibit carcinogenesis. Carcinogenesis 32(4):545–553CrossRefGoogle Scholar
  123. Khodavandi A, Harmal NS, Alizadeh F et al (2011) Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine 19(1):56–63CrossRefGoogle Scholar
  124. Kim DH, Jeong D, Kim H et al (2018) Modern perspectives on the health benefits of kefir in next generation sequencing era: improvement of the host gut microbiota. Crit Rev Food Sci Nutr 1–12. https://doi.org/10.1080/10408398.2018.1428168
  125. Kimura Y, Sumiyoshi M (2009) Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. J Nutr 139(11):2079–2086CrossRefGoogle Scholar
  126. Kocyigit A, Guler EM (2017) Curcumin induce DNA damage and apoptosis through generation of reactive oxygen species and reducing mitochondrial membrane potential in melanoma cancer cells. Cell Mol Biol 63(11):97–105CrossRefGoogle Scholar
  127. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757CrossRefGoogle Scholar
  128. Kumar R, Chhatwal S, Arora S et al (2013) Antihyperglycemic, antihyperlipidemic, anti-inflammatory and adenosine deaminase- lowering effects of garlic in patients with type 2 diabetes mellitus with obesity. Diabetes Metab Syndr Obes 6:49–56CrossRefGoogle Scholar
  129. Kumar G, Mittal S, Sak K et al (2016) Molecular mechanisms underlying chemopreventive potential of curcumin: current challenges and future perspectives. Life Sci 148:313–328CrossRefGoogle Scholar
  130. Kundu JK, Surh J (2008) Inflammation: gearing the journey to cancer. Mutat Res 659:15–30CrossRefGoogle Scholar
  131. Laureys D, De Vuyst L (2017) The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process. J Appl Microbiol 122(3):719–732CrossRefGoogle Scholar
  132. Lavoie S, Chen Y, Dalton TP et al (2009) Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem 108:1410–1422CrossRefGoogle Scholar
  133. Leaf A, Kang JX, Xiao YF et al (2003) Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation 107:2646–2652CrossRefGoogle Scholar
  134. Li Y, Zhang T (2013) Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol 9(8):1097–1103CrossRefGoogle Scholar
  135. Li X, Meng Y, Xie C et al (2017) Diallyl trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J Cell Biochem.  https://doi.org/10.1002/jcb.26613CrossRefGoogle Scholar
  136. Liao W, Xiang W, Wang FF et al (2017) Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress. Biomed Pharmacother 95:1177–1186CrossRefGoogle Scholar
  137. Lloyd-Jones DM, Hong Y, Labarthe D et al (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s Strategic Impact Goal through 2020 and beyond. Circulation 121:586–613CrossRefGoogle Scholar
  138. Lobo V, Patil A, Phatak A et al (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126CrossRefGoogle Scholar
  139. Ma ZF, Zhang H (2017) Phytochemical constituents, health benefits, and industrial applications of grape seeds: a mini-review. Antioxidants (Basel) 6(3):1–11Google Scholar
  140. Ma X, Liu Y, Tan Y et al (2017) Diallyl disulphide inhibits apolipoprotein(a) expression in HepG2 cells through the MEK1-ERK1/2-ELK-1 pathway. Lipids Health Dis 16(1):223CrossRefGoogle Scholar
  141. Mageney V, Neugart S, Albach DC (2017) A guide to the variability of flavonoids in Brassica oleracea. Molecules 22(2):E252CrossRefGoogle Scholar
  142. Mahmoudi E, Saeidi M, Marashi MA et al (2016) In vitro activity of kombucha tea ethyl acetate fraction against Malassezia species isolated from seborrhoeic dermatitis. Curr Med Mycol 2(4):30–36CrossRefGoogle Scholar
  143. Mahn A, Reyes A (2012) An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci Technol Int 18(6):503–514CrossRefGoogle Scholar
  144. Manayi A, Nabavi SM, Setzer WN et al (2017) Piperine as a potential anti-cancer agent: a review on preclinical studies. Curr Med Chem.  https://doi.org/10.2174/0929867324666170523120656CrossRefGoogle Scholar
  145. Mancini E, Beglinger C, Drewe J et al (2017) Green tea effects on cognition, mood and human brain function: a systematic review. Phytomedicine 34:26–37CrossRefGoogle Scholar
  146. Mandel SA, Amit T, Weinreb O et al (2008) Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 14:352–365CrossRefGoogle Scholar
  147. Maradana MR, Thomas R, O’Sullivan BJ (2013) Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 57(9):1550–1556CrossRefGoogle Scholar
  148. Marchese A, Barbieri R, Sanches-Silva A et al (2016) Antifungal and antibacterial activities of allicin: a review. Trends Food Sci Technol 52:49–56CrossRefGoogle Scholar
  149. Markowiak P, Slizewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(1021):1–30Google Scholar
  150. Marsh AJ, O’Sullivan O, Hill C et al (2014) Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol 38:171–178CrossRefGoogle Scholar
  151. Martins T, Colaço B, Venâncio C et al (2018) Potential effects of sulforaphane to fight obesity. J Sci Food Agric.  https://doi.org/10.1002/jsfa.8898
  152. Mas E, Woodman RJ, Burke V et al (2010) The omega-3 fatty acids EPA and DHA decrease plasma F(2)-isoprostanes: results from two placebo-controlled interventions. Free Radic Res 44(9):983–990CrossRefGoogle Scholar
  153. Mas E, Croft KD, Zahra P et al (2012) Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem 58:1476–1484CrossRefGoogle Scholar
  154. Mashhadi NS, Ghiasvand R, Askari G et al (2013) Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. Int J Prev Med 4(1):36–42Google Scholar
  155. Mayneris-Perxachs J, Sala-Vila A, Chisaguano M et al (2014) Effects of 1-year intervention with a mediterranean diet on plasma fatty acid composition and metabolic syndrome in a population at high cardiovascular risk. PLoS One 9(3):1–11CrossRefGoogle Scholar
  156. Meghwal M, Goswami TK (2013) Piper nigrum and piperine: an update. Phytother Res 27(8):1121–1130CrossRefGoogle Scholar
  157. Melo SA, Esteller M (2011) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585:2087–2099CrossRefGoogle Scholar
  158. Metwally DM, Al-Olayan EM, El-Khadragy MF et al (2016) Anti-leishmanial activity (in vitro and in vivo) of allicin and allicin cream using Leishmania major (sub-strain Zymowme LON4) and Balb/c Mice. PLoS One 11(8):1–11CrossRefGoogle Scholar
  159. Meyer BJ, Mann NJ, Lewis JL et al (2003) Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 38:391–398CrossRefGoogle Scholar
  160. Miles EA, Zoubouli P, Calder PC (2005) Effects of polyphenols on human Th1 and Th2 cytokine production. Clin Nutr 24:780–784CrossRefGoogle Scholar
  161. Miller PE, Van Elswyk M, Alexander DD (2014) Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am J Hypertens 27:885–896CrossRefGoogle Scholar
  162. Mohd Yusof YA (2016) Gingerol and its role in chronic diseases. Adv Exp Med Biol 929:177–207CrossRefGoogle Scholar
  163. Morais Ferreira JM, Azevedo BM, Luccas V et al (2017) Sensory profile and consumer acceptability of prebiotic white chocolate with sucrose substitutes and the addition of goji berry (Lycium barbarum). J Food Sci 82(3):818–824CrossRefGoogle Scholar
  164. Moreda W, Pérez-Camino MC, Cert A (2001) Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J Chromatogr A 936(1–2):159–171CrossRefGoogle Scholar
  165. Moreno DA, Carvajal M, López-Berenguer C et al (2006) Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal 41(5):1508–1522CrossRefGoogle Scholar
  166. Mori TA (2017) Marine omega-3 fatty acids in the prevention of cardiovascular disease. Fitoterapia 123:51–58CrossRefGoogle Scholar
  167. Mori TA, Beilin LJ (2001) Long-chain omega 3 fatty acids, blood lipids and cardiovascular risk reduction. Curr Opin Lipidol 12:11–17CrossRefGoogle Scholar
  168. Mori TA, Woodman RJ (2006) The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Curr Opin Clin Nutr Metab Care 9(2):95–104CrossRefGoogle Scholar
  169. Mozaffarian D, Wu JH (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58:2047–2067CrossRefGoogle Scholar
  170. Mozaffarian D, Bryson CL, Lemaitre RN et al (2005) Fish intake and risk of incident heart failure. J Am Coll Cardiol 45(12):2015–2021CrossRefGoogle Scholar
  171. Mudduluru G, George-William JN, Muppala S et al (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31(3):185–197CrossRefGoogle Scholar
  172. Mujumdar AM, Dhuley JN, Deshmukh VK et al (1990) Anti-inflammatory activity of piperine. Jpn J Med Sci Biol 43(3):95–100CrossRefGoogle Scholar
  173. Nestel P, Shige H, Pomeroy S et al (2002) The n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans. Am J Clin Nutr 76(2):326–330CrossRefGoogle Scholar
  174. Neto MM, da Silva TF, de Lima FF et al (2017) Whole red grape juice reduces blood pressure at rest and increases post-exercise hypotension. J Am Coll Nutr 36(7):533–540CrossRefGoogle Scholar
  175. Ngo QM, Tran PT, Tran MH et al (2017) Alkaloids from Piper nigrum exhibit anti-inflammatory activity via activating the Nrf2/HO-1 pathway. Phytother Res 31(4):663–670CrossRefGoogle Scholar
  176. Nielsen B, Gürakan GC, Unlü G (2014) Kefir: a multifaceted fermented dairy product. Probiotics Antimicrob Proteins 6(3–4):123–135CrossRefGoogle Scholar
  177. Nohara T, Fujiwara Y, Ikeda T et al (2013) Cyclic sulfoxides garlicnins B2, B3, B4, C2, and C3 from Allium sativum. Chem Pharm Bull (Tokyo) 61(7):695–699CrossRefGoogle Scholar
  178. Oh BT, Jeong SY, Velmurugan P et al (2017) Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. J Biosci Bioeng 124(5):542–550CrossRefGoogle Scholar
  179. Okada LSDRR, Oliveira CP, Stefano JT et al (2017) Omega-3 PUFA modulate lipogenesis, ER stress, and mitochondrial dysfunction markers in NASH – proteomic and lipidomic insight. Clin Nutr.  https://doi.org/10.1016/j.clnu.2017.08.031CrossRefGoogle Scholar
  180. Oludoyin AP, Adegoke SR (2014) Efficacy of ginger (Zingiber officinale Roscoe) extracts in lowering blood glucose in normal and high fat diet-induced diabetic rats. Am J Food Nutr 2(4):55–58Google Scholar
  181. Omar SH (2010) Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm J 18:111–121CrossRefGoogle Scholar
  182. Owen RW, Giacosa A, Hull WE et al (2000) Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol 1:107–112CrossRefGoogle Scholar
  183. Ozen M (2015) The history of probiotics: the untold story. Benef Microbes 6(2):159–165CrossRefGoogle Scholar
  184. Pakravan N, Mahmoudi E, Hashemi SA et al (2017) Cosmeceutical effect of ethyl acetate fraction of Kombucha tea by intradermal administration in the skin of aged mice. J Cosmet Dermatol.  https://doi.org/10.1111/jocd.12453
  185. Pan Y, Wang Y, Cai L et al (2012) Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol 166:1169–1182CrossRefGoogle Scholar
  186. Panda AK, Chakraborty D, Sarkar I et al (2017) New insights into therapeutic activity and anticancer properties of curcumin. J Exp Pharmacol 9:31–45CrossRefGoogle Scholar
  187. Park EJ, Pizzuto JM (2002) Botanicals in cancer chemoprevention. Cancer Metast Rev 21:231–255CrossRefGoogle Scholar
  188. Pase MP, Grima NA, Sarris J (2011) Do long-chain n-3 fatty acids reduce arterial stiffness? A meta-analysis of randomised controlled trials. Br J Nutr 106(7):974–980CrossRefGoogle Scholar
  189. Perrone D, Ardito F, Giannatempo G et al (2015) Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 10(5):1615–1162CrossRefGoogle Scholar
  190. Prado MR, Blandón LM, Vandenberghe LPS et al (2015) Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol 6:1177Google Scholar
  191. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46:2–28CrossRefGoogle Scholar
  192. Prashant A, Rangaswamy C, Yadav AK et al (2017) In vitro anticancer activity of ethanolic extracts of Piper nigrum against colorectal carcinoma cell lines. Int J Appl Basic Med Res 7(1):67–72CrossRefGoogle Scholar
  193. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C et al (2016) Curcumin and health. Molecules 21(3):264CrossRefGoogle Scholar
  194. Quiles JL, Farquharson AJ, Simpson DK et al (2002) Olive oil phenolics: effects on DNA oxidation and redox enzyme mRNA in prostate cells. Br J Nutr 88:225–234CrossRefGoogle Scholar
  195. Rafie N, Golpour Hamedani S, Ghiasvand R et al (2015) Kefir and cancer: a systematic review of literatures. Arch Iran Med 18(12):852–857Google Scholar
  196. Rafiee P, Nelson VM, Manley S et al (2009) Effect of curcumin on acidic pH-induced expression of IL-6 and IL-8 in human esophageal epithelial cells (HET-1A): role of PKC, MAPKs, and NF-kappaB. Am J Physiol Gastrointest Liver Physiol 296(2):388–398CrossRefGoogle Scholar
  197. Ramírez-Boscá A, Soler A, Carrion MA et al (2000) An hydroalcoholic extract of Curcuma longa lowers the apo B/apo A ratio. Implications for atherogenesis prevention. Mech Ageing Dev 119(1–2):41–77CrossRefGoogle Scholar
  198. Rasmussen HE, Hamaker BR (2017) Prebiotics and inflammatory bowel disease. Gastroenterol Clin N Am 46(4):783–795CrossRefGoogle Scholar
  199. Rauf A, Imran M, Suleria HAR et al (2017) A comprehensive review of the health perspectives of resveratrol. Food Funct 8(12):4284–4305CrossRefGoogle Scholar
  200. Reddy S, Aggarwal BB (1994) Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett 341(1):19–22CrossRefGoogle Scholar
  201. Rehman A, Mehmood MH, Haneef M et al (2015) Potential of black pepper as a functional food for treatment of airways disorders. J Func Foods 19:126–140CrossRefGoogle Scholar
  202. Reiter J, Levina N, Van Der Linden M et al (2017) Diallylthiosulfinate (allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules 22(10):1–14CrossRefGoogle Scholar
  203. Rezaee R, Momtazi AA, Monemi A et al (2017) Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 117:218–227CrossRefGoogle Scholar
  204. Ríos-Covián D, Ruas-Madiedo P, Margolles A et al (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7(185):1–9Google Scholar
  205. Rivera M, Ramos Y, Rodríguez-Valentín M et al (2017) Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS One 12(6):1–25CrossRefGoogle Scholar
  206. Roberfroid M, Gibson GR, Hoyles L et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(2):S1–S63CrossRefGoogle Scholar
  207. Ross S (2000) Functional foods: the Food and Drug Administration perspective. Am J Clin Nutr 71(6):1735S–1738SCrossRefGoogle Scholar
  208. Rotondi A, Alfei B, Magli M et al (2010) Influence of genetic matrix and crop year on chemical and sensory profiles of Italian monovarietal extra-virgin olive oils. J Sci Food Agric 90(15):2641–2648CrossRefGoogle Scholar
  209. Rushworth SA, Ogborne RM, Charalambos CA et al (2006) Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun 341(4):1007–1016CrossRefGoogle Scholar
  210. Ryu JH, Kang D (2017) Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: a review. Molecules 22(6):1–14CrossRefGoogle Scholar
  211. Sa G, Das T (2008) Anticancer effects of curcumin: cycle of life and death. Cell Div 3(1):14CrossRefGoogle Scholar
  212. Saini S, Arora S, Majid S et al (2011) Curcumin modulates micrRNA-203 mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res 4:1698–1709CrossRefGoogle Scholar
  213. Salafzoon S, Mahmoodzadeh Hosseini H et al (2017) Evaluation of the antioxidant impact of ginger-based kombucha on the murine breast cancer model. J Complement Integr Med 15(1):1–8CrossRefGoogle Scholar
  214. Salmerón I (2017) Fermented cereal beverages: from probiotic, prebiotic and synbiotic towards Nanoscience designed healthy drinks. Lett Appl Microbiol 65(2):114–124CrossRefGoogle Scholar
  215. Sanders ME, Marco ML (2010) Food formats for effective delivery of probiotics. Annu Rev Food Sci Technol 1:65–85CrossRefGoogle Scholar
  216. Sarkar S (2013) Probiotics as functional foods: documented health benefits. NFS 43(2):107–115Google Scholar
  217. Savaiano DA (2014) Lactose digestion from yogurt: mechanism and relevance. Am J Clin Nutr 99(5):1251S–1255SCrossRefGoogle Scholar
  218. Scoditti E, Calabriso N, Massaro M et al (2012) Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys 527(2):81–89CrossRefGoogle Scholar
  219. Scotece M, Gómez R, Conde J et al (2012) Further evidence for the anti-inflammatory activity of oleocanthal: inhibition of MIP-1 and IL-6 in J774 macrophages and in ATDC5 chondrocytes. Life Sci 91(23–24):1229–1235CrossRefGoogle Scholar
  220. Seidel DV, Azcárate-Peril MA, Chapkin RS et al (2017) Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Semin Cancer Biol 46:191–204CrossRefGoogle Scholar
  221. Selvaggini R, Servili M, Urbani S et al (2006) Evaluation of phenolic compounds in virgin olive oil by direct injection in high-performance liquid chromatography with fluorometric detection. J Agric Food Chem 54:2832–2838CrossRefGoogle Scholar
  222. Semwal RB, Semwal DK, Combrinck S et al (2015) Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 117:554–568CrossRefGoogle Scholar
  223. Serhan CN (2017) Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 31(4):1273–1288CrossRefGoogle Scholar
  224. Servili M, Esposto S, Fabiani R et al (2009) Phenolic compounds in olive oil: antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 17(2):76–84CrossRefGoogle Scholar
  225. Sharifi M, Moridnia A, Mortazavi D et al (2017) Kefir: a powerful probiotics with anticancer properties. Med Oncol 34(11):183Google Scholar
  226. Sheppard JG, McAleer JP, Saralkar P et al (2018) Allicin-inspired pyridyl disulfides as antimicrobial agents for multidrug-resistant Staphylococcus aureus. Eur J Med Chem 143:1185–1195CrossRefGoogle Scholar
  227. Siddiqui FJ, Avanc BI, Mahmudd S et al (2015) Uncontrolled diabetes mellitus: prevalence and risk factors among people with type 2 diabetes mellitus in an Urban District of Karachi, Pakistan. Diabetes Res Clin Pract 107(1):148–156CrossRefGoogle Scholar
  228. Singla V, Chakkaravarthi S (2017) Applications of prebiotics in food industry: a review. Food Sci Technol Int 23(8):649–667CrossRefGoogle Scholar
  229. Sreenivasan S, Thirumalai K, Danda R et al (2012) Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. Curr Eye Res 37:421–428CrossRefGoogle Scholar
  230. Stangl V, Lorenz M, Stangl K (2006) The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res 50:218–228CrossRefGoogle Scholar
  231. Stanić Z (2017) Curcumin, a compound from natural sources, a true scientific challenge – a review. Plant Foods Hum Nutr 72(1):1–12CrossRefGoogle Scholar
  232. Surh YJ (1999) Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428(1-2):305–327CrossRefGoogle Scholar
  233. Surh YJ, Chun KS, Cha HH et al (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480–481:243–268CrossRefGoogle Scholar
  234. Tabrizi R, Moosazadeh M, Lankarani KB et al (2017) The effects of synbiotic supplementation on glucose metabolism and lipid profiles in patients with diabetes: a systematic review and meta-analysis of randomized controlled trials. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-017-9299-1CrossRefGoogle Scholar
  235. Tachibana H (2009) Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum Nutr 61:156–169CrossRefGoogle Scholar
  236. Tasleem F, Azhar I, Ali SN et al (2014) Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pac J Trop Med 7(14):60275–60273.  https://doi.org/10.1016/S1995-7645CrossRefGoogle Scholar
  237. Tortorella SM, Royce SG, Licciardi PV et al (2015) Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal 22(16):1382–13424CrossRefGoogle Scholar
  238. Trinidad PT, Rosario SS, Marco PDL et al (2012) Zingiber officinale and Curcuma longa as potential functional foods/ingredients. Food Public Health 2(2):1–4CrossRefGoogle Scholar
  239. Trujillo J, Chirino YI, Molina-Jijón E et al (2013) Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol 1:448–456CrossRefGoogle Scholar
  240. Tung BT, Thu DK, Thu NTK et al (2017) Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract. J Complement Integr Med 14(4).  https://doi.org/10.1515/jcim-2016-0116
  241. Tung YT, Chen HL, Wu HS et al (2018) Kefir peptides prevent hyperlipidemia and obesity in high-fat-diet-induced obese rats via lipid metabolism modulation. Mol Nutr Food Res 62(3).  https://doi.org/10.1002/mnfr.201700505CrossRefGoogle Scholar
  242. Van Buul VJ, Brouns FJ (2015) Nutrition and health claims as marketing tools. Crit Rev Food Sci Nutr 55(11):1552–1560CrossRefGoogle Scholar
  243. Vandenplas Y, De Greef E, Veereman G (2014) Prebiotics in infant formula. Gut Microbes 5(6):681–687CrossRefGoogle Scholar
  244. Vanegas-Azuero AM, Gutiérrez LF (2018) Physicochemical and sensory properties of yogurts containing sacha inchi (Plukenetia volubilis L.) seeds and β-glucans from Ganoderma lucidum. J Dairy Sci 101(2):1020–1033CrossRefGoogle Scholar
  245. Varshney R, Budoff MJ (2016) Garlic and heart disease. J Nutr 146:416S–421SCrossRefGoogle Scholar
  246. Vijayakumar RS, Surya D, Nalini N (2004) Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep 9(2):105–110CrossRefGoogle Scholar
  247. Vina I, Semjonovs P, Linde R et al (2014) Current evidence on physiological activity and expected health effects of kombucha fermented beverage. J Med Food 17(2):179–188CrossRefGoogle Scholar
  248. Visioli F, Galli C (1998) Olive oil polyphenols and their potential effects on human health. J Agric Food Chem 46:4292–4296CrossRefGoogle Scholar
  249. Wallace B (2009) Clinical use of probiotics in the pediatric population. Nutr Clin Pract 24(1):50–59CrossRefGoogle Scholar
  250. Wang TT, Schoene NW, Milner JA et al (2012) Broccoli-derived phytochemicals indole-3-carbinol and 3,3’-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: comparison with other cancer preventive phytochemicals. Mol Carcinog 51(3):244–256CrossRefGoogle Scholar
  251. Wang Y, Ji B, Wu W et al (2014) Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components. J Sci Food Agric 94(2):265–272CrossRefGoogle Scholar
  252. Wang CZ, Qi LW, Yuan CS (2015) Cancer chemoprevention effects of ginger and its active constituents: potential for new drug discovery. Am J Chin Med 43(7):1351–1363CrossRefGoogle Scholar
  253. Wang C, Wang Y, Yu M et al (2017a) Grape-seed polyphenols play a protective role in elastase-induced abdominal aortic aneurysm in mice. Sci Rep 7(1):9402CrossRefGoogle Scholar
  254. Wang J, Zhang X, Lan H et al (2017b) Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): a meta-analysis of randomized controlled trials. Food Nutr Res 61:1–9Google Scholar
  255. Waterman E, Lockwood B (2007) Active components and clinical applications of olive oil. Altern Med Rev 12(4):331–342Google Scholar
  256. Wilkins T, Sequoia J (2017) Probiotics for gastrointestinal conditions: a summary of the evidence. Am Fam Physician 96(3):170–178Google Scholar
  257. Wilson B, Whelan K (2017) Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J Gastroenterol Hepatol 32(1):64–68CrossRefGoogle Scholar
  258. Yadav S, Trivedi NA, Bhatt JD (2015) Antimicrobial activity of fresh garlic juice: an in vitro study. Ayu 36(2):203–207CrossRefGoogle Scholar
  259. Yang J, Xiao YY (2013) Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr 53(11):1202–1225CrossRefGoogle Scholar
  260. Yang CS, Wang X, Lu G et al (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439CrossRefGoogle Scholar
  261. Yarru L, Settivari R, Gowda N et al (2009) Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult Sci 88(12):2620–2627CrossRefGoogle Scholar
  262. Yin X, Feng C, Han L et al (2018) Diallyl disulfide inhibits the metastasis of type II esophageal gastric junction adenocarcinoma cells via NF-κB and PI3K/AKT signaling pathways in vitro. Oncol Rep 39(2):784–794Google Scholar
  263. Yu J, Song P, Perry R et al (2017) The effectiveness of green tea or green tea extract on insulin resistance and glycemic control in type 2 diabetes mellitus: a meta-analysis. Diabetes Metab J 41(4):251–262CrossRefGoogle Scholar
  264. Yuan JM (2013) Cancer prevention by green tea: evidence from epidemiologic studies. Am J Clin Nutr 98(6):1676S–1681SCrossRefGoogle Scholar
  265. Zanirati DF, Abatemarco M Jr, Sandes SH et al (2015) Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. Anaerobe 32:70–76CrossRefGoogle Scholar
  266. Zhang M, Holman CD, Huang JP et al (2007) Green tea and the prevention of breast cancer: a case-control study in Southeast China. Carcinogenesis 28:1074–1078CrossRefGoogle Scholar
  267. Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12(3):332–347CrossRefGoogle Scholar
  268. Zhu J, Ren T, Zhou M et al (2016) The combination of blueberry juice and probiotics reduces apoptosis of alcoholic fatty liver of mice by affecting SIRT1 pathway. Drug Des Devel Ther 10:1649–1661CrossRefGoogle Scholar
  269. Zou L, Hu YY, Chen WX (2015) Antibacterial mechanism and activities of black pepper chloroform extract. J Food Sci Technol 52(12):8196–8203CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adriana Campos
    • 1
  • Elisa Brasili
    • 2
  • Camile Cecconi Cechinel-Zanchett
    • 3
  • Valdir Cechinel Filho
    • 3
  1. 1.Departamento de Nutrição, Faculdade de Saúde PúblicaUniversidade de São Paulo-USPSão PauloBrazil
  2. 2.Department of Environmental BiologySapienza University of RomeRomeItaly
  3. 3.Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR)Universidade do Vale do Itajaí – UNIVALIItajaíBrazil

Personalised recommendations