NMR Identification of Biologically Active Natural Products: Strategies and Challenges

  • Gloria Ivonne Hernández-Bolio
  • Luis Manuel Peña-RodríguezEmail author


Nuclear magnetic resonance has evolved into a spectroscopic technique that makes the identification of a natural product possible in a relatively short period of time. Currently, the advances in instrumentation and in pulse sequence development produce better spectra and experiments that provide a great deal of information about the chemical structure of a given product. Still, the skills of the researcher are critical for extraction and interpretation of the data, when facing the challenge of putting the molecular puzzle together. These skills can be acquired by having a good knowledge of both the technique and its experimentation possibilities, which provide the experience necessary to recognize the NMR features of different classes of molecules. We present here a number of strategies and challenges used in our laboratory for the identification of different natural products obtained during our search for bioactive metabolites from the native flora of the Yucatán Peninsula.


Nuclear magnetic resonance Natural products Structure elucidation 1H-NMR 13C-NMR 


  1. Borges-Argáez R, Peña-Rodríguez LM, Waterman P (2000) Flavonoids from the stem bark of Lonchocarpus xuul. Phytochemistry (54):611–614Google Scholar
  2. Borges-Argaez R, Medina-Baizabal L, May-Pat F et al (2001) Merilactone, an unusual C-19 metabolite from the root extract of Chiococca alba. J Nat Prod 64(2):228–231CrossRefGoogle Scholar
  3. Borges-Argáez R, Peña-Rodrıguez LM, Waterman PG (2002) Flavonoids from two Lonchocarpus species of the Yucatan peninsula. Phytochemistry 60(5):533–540CrossRefGoogle Scholar
  4. Borges-Argaez R, Balnbury L, Flowers A et al (2007) Cytotoxic and antiprotozoal activity of flavonoids from Lonchocarpus spp. Phytomedicine 14(7–8):530–533CrossRefGoogle Scholar
  5. Breton RC, Reynolds WF (2013) Using NMR to identify and characterize natural products. Nat Prod Rep 30(4):501–524CrossRefGoogle Scholar
  6. Bross-Walch N, Kuhn T, Moskau D et al (2005) Strategies and tools for structure determination of natural products using modern methods of NMR spectroscopy. Chem Biodivers 2(2):147–177CrossRefGoogle Scholar
  7. Bubb WA (2003) NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concepts Magn Reson A 19a(1):1–19CrossRefGoogle Scholar
  8. Castañar L (2017) Pure shift 1H NMR: what is next? Magn Reson Chem 55(1):47–53CrossRefGoogle Scholar
  9. Castañar L, Parella T (2015) Broadband 1H homodecoupled NMR experiments: recent developments, methods and applications. Magn Reson Chem 53(6):399–426CrossRefGoogle Scholar
  10. Chan-Bacab MJ, Balanza E, Deharo E et al (2003) Variation of leishmanicidal activity in four populations of Urechites andrieuxii. J Ethnopharmacol 86(2–3):243–247CrossRefGoogle Scholar
  11. Dal Poggetto G, Castañar L, Morris G et al (2016) A new tool for NMR analysis of complex systems: selective pure shift TOCSY. RSC Adv 6(102):100063–100066CrossRefGoogle Scholar
  12. Deepak D, Khare A, Khare MP (1989) Plant pregnanes. Phytochemistry 28(12):3255–3263CrossRefGoogle Scholar
  13. Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, ChichesterGoogle Scholar
  14. Dominguez-Carmona D, Escalante-Erosa F, Garcia-Sosa K et al (2011) Metabolites from roots of Colubrina greggii var. yucatanensis and evaluation of their antiprotozoan, cytotoxic and antiproliferative activities. J Braz Chem Soc 22(7):1279–1285CrossRefGoogle Scholar
  15. Duus J, Gotfredsen C, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100(12):4589–4614CrossRefGoogle Scholar
  16. Dzib-Reyes EV, García-Sosa K, Simá-Polanco P et al (2012) Diterpenoids from the root extract of Chiococca alba. Revista latinoamericana de química 40(3):123–129Google Scholar
  17. Eisenreich W, Bacher A (2007) Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochemistry 68(22–24):2799–2815CrossRefGoogle Scholar
  18. Emwas A-H, Luchinat C, Turano P et al (2015) Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics 11(4):872–894CrossRefGoogle Scholar
  19. Escalante Erosa F, Gamboa-León MR, Lecher JG et al (2002) Major components from the epicuticular wax of Cocos nucifera. Rev Soc Quim Mex 46(3):247–250Google Scholar
  20. Escalante-Erosa F, González-Morales B, Quijano-Quiñones RF et al (2012) Dihydrospinochalcone-A and epi-flemistrictin-B, natural isocordoin derivatives from the root extract of Lonchocarpus xuul. Nat Prod Commun 7(12):1589–1590PubMedPubMedCentralGoogle Scholar
  21. Garcia-Sosa K, Aldana-Perez R, Moo V et al (2017) Dinimbidiol ether, a novel bioactive dimeric diterpene from the root extract of Cnidoscolus souzae. Nat Prod Commun 12(9):1391–1392Google Scholar
  22. Gheysen K, Mihai C, Conrath K et al (2008) Rapid identification of common hexapyranose monosaccharide units by a simple TOCSY matching approach. Chem Eur J 14(29):8869–8878CrossRefGoogle Scholar
  23. Günther H (2013) NMR spectroscopy: basic principles, concepts and applications in chemistry. Wiley, Weinheim an der BergstrasseGoogle Scholar
  24. Halabalaki M, Vougogiannopoulou K, Mikros E et al (2014) Recent advances and new strategies in the NMR-based identification of natural products. Curr Opin Biotechnol 25:1–7CrossRefGoogle Scholar
  25. Hernández-Bolio GI, Kutzner E, Eisenreich W et al (2017) The use of 1H-NMR metabolomics to optimise the extraction and preliminary identification of anthelmintic products from the leaves of Lysiloma latisiliquum. Phytochem Anal 29(4):413–420CrossRefGoogle Scholar
  26. Hornak JP (2017). The basics of NMR. http://wwwcisritedu/htbooks/nmr/bnmrhtm. Accessed 25 Jan 2018
  27. Hwang D, Hyun J, Jo G et al (2011) Synthesis and complete assignment of NMR data of 20 chalcones. Magn Reson Chem 49(1):41–45CrossRefGoogle Scholar
  28. Joseph-Nathan P (1982) Resonancia magnetica nuclear de hidrogeno-1 y de carbono-13. OEA Ser G CP Organization of American States, Washington, DCGoogle Scholar
  29. Kan FL, Villanueva LHH, Trujillo CAE, Comisión Reeditora de la Enciclopedia Y (1944) Enciclopedia yucatanense. Gobierno de YucatánGoogle Scholar
  30. Kostova I, Simeonov M, Iossifova T et al (1996) Three 9,19-cyclotetracyclic triterpenes from Skimmia wallichii. Phytochemistry 43:643–648CrossRefGoogle Scholar
  31. Mijangos-Ramos IF, Zapata-Estrella HE, Ruiz-Vargas JA, Escalante-Erosa F, Gómez-Ojeda N, García-Sosa K, Cechinel-Filho V, Meira-Quintão NL, Peña-Rodríguez LM (2018) Bioactive dicaffeoylquinic acid derivatives from the root extract of Calea urticifolia. Rev Bras Farm 28(3):339–343CrossRefGoogle Scholar
  32. Nagashima F, Kasai W, Kondoh M et al (2003) New ent-kaurene-type diterpenoids possessing cytotoxicity from the New Zealand liverwort Jungermannia species. Chem Pharm Bull 51(10):1189–1192CrossRefGoogle Scholar
  33. Parella T (2010) Pulse program catalog: I. 1D & 2D NMR experiments, vol 1. Bruker Biospin GmbH. Barcelona, SpainGoogle Scholar
  34. Pena-Rodriguez L, Yam-Puc A, Knispel N et al (2014) Isotopologue profiling of triterpene formation under physiological conditions. Biosynthesis of Lupeol-3-(3′-R-hydroxy)-stearate in Pentalinon andrieuxii. JOC 79(7):2864–2873CrossRefGoogle Scholar
  35. Pistelli L (2002) Secondary metabolites of genus Astragalus: structure and biological activity. Stud Nat Prod Chem 27:443–545CrossRefGoogle Scholar
  36. Reynolds WF, Mazzola EP (2015) Nuclear magnetic resonance in the structural elucidation of natural products. In: Progress in the chemistry of organic natural products 100. Springer,Vienna, Austria, pp 223–309Google Scholar
  37. Sanchez-Medina A, Stevenson P, Habtemariam S et al (2009) Triterpenoid saponins from a cytotoxic root extract of Sideroxylon foetidissimum subsp gaumeri. Phytochemistry 70(6):765–772CrossRefGoogle Scholar
  38. Silverstein RM, Webster FX, Kiemle DJ et al (2014) Spectrometric identification of organic compounds. Wiley, HobokenGoogle Scholar
  39. Simmler C, Napolitano JG, McAlpine JB et al (2014) Universal quantitative NMR analysis of complex natural samples. Curr Opin Biotechnol 25:51–59CrossRefGoogle Scholar
  40. Wang FN, Ma ZQ, Liu Y et al (2009) New phenylethanoid glycosides from the fruits of Forsythia suspense (Thunb.) vahl. Molecules 14(3):1324–1331CrossRefGoogle Scholar
  41. Wehrli F, Nishida T (1979) The use of carbon-13 nuclear magnetic resonance spectroscopy in natural products chemistry. In: Fortschritte der Chemie Organischer Naturstoffe [Progress in the chemistry of organic natural products]. Springer, Vienna, pp 1–229Google Scholar
  42. Wishart DS (2013) Characterization of biopharmaceuticals by NMR spectroscopy. TrAC Trends Anal Chem 48:96–111CrossRefGoogle Scholar
  43. Xiao-Ling S, Ying-Jie H, Yin-Ling A et al (1993) Steroids from Amalocalyx yunnanensis. Phytochemistry 33(3):687–689CrossRefGoogle Scholar
  44. Yam-Puc A, Pena-Rodriguez L (2009) Isocordoin derivatives from the root extract of Lonchocarpus xuul. J Mex Chem Soc 53(1):12–14Google Scholar
  45. Yam-Puc A, Escalante-Erosa F, Pech-Lopez M et al (2009) Trinorsesquiterpenoids from the root extract of Pentalinon andrieuxii. J Nat Prod 72(4):745–748CrossRefGoogle Scholar
  46. Yam-Puc A, Chee-González L, Escalante-Erosa F et al (2012) Steroids from the root extract of Pentalinon andrieuxii. Phytochem Lett 5(1):45–48CrossRefGoogle Scholar
  47. Yam-Puc AF, Escalante-Erosa K, García-Sosa FG et al (2013) A case of mistaken identity. Lupeol-3-(3′R)-hydroxy-stearate can be mistakenly identified as lupeol acetate when only analyzed by GC-MS. Phytochem Lett 6:649–652CrossRefGoogle Scholar
  48. Zapata-Estrella H, Sanchez-Pardenilla A, Garcia-Sosa K et al (2014) Bioactive metabolites from Cnidoscolus souzae and Acmella pilosa. Nat Prod Commun 9(9):1319–1321PubMedPubMedCentralGoogle Scholar
  49. Zhang WD, Bang Tam HT, Chen WS et al (2000) Two new caffeoyl conjugation from Erigeron breviscapus. J Asian Nat Prod Res 2(4):283–288CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gloria Ivonne Hernández-Bolio
    • 1
  • Luis Manuel Peña-Rodríguez
    • 1
    Email author
  1. 1.Unidad de Biotecnología, Centro de Investigación Científica de YucatánMéridaMéxico

Personalised recommendations