Comparison and Analysis of Multibody Dynamics Formalisms for Solving Optimal Control Problem

  • Quentin DocquierEmail author
  • Olivier Brüls
  • Paul Fisette
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 33)


Optimal Control methods are increasingly used for the control of multibody systems (MBS). This work analyzes the different dynamic formulations and compare their performances in solving Optimal Control Problem. The focus is on minimal coordinates and the derivation of the dynamics via the recursive methods for tree-like MBS (i.e., the so-called Newton-Euler and Order-N recursive algorithms). The different formulations are introduced and their derivations are discussed. A benchmark case study (i.e., a 3D series manipulator balancing an inverted pendulum) is modeled and a series of manipulation tasks (movement of the end effector in the 3D space) are performed. The OCP is formulated and solved with the help of the CasADi software while the dynamic formulations are generated by the Robotran software. Results show that the implicit and semi-explicit formulations derived via the Newton-Euler recursive algorithm lead to faster computation of the OCP than the explicit formulations. This is explained by a more compact expression for the implicit dynamics. However, a lower number of high local minima is observed with the explicit formulations for the most extreme robot manipulations.


Multibody system dynamics Direct optimal control Newton-Euler recursive algorithm Tree-like system 3D serial robot Inverted pendulum 



We would like to thank Dr. Joris Gillis from KUL for his help in the formulation and solving of the Optimal Control Problems with CasADi. Quentin Docquier is a FRIA Grant Holder of the Fonds de la Recherche Scientifique – FNRS, Belgium.


  1. 1.
    Andersson, J., Gillis, J., Horn, G., Rawings, J.B., Diehl, M.: CasADi – software framework for nonlinear optimization and optimal control. In: Mathematical Programming Computation (2018)Google Scholar
  2. 2.
    Bastos, G., Seifried, R., Bruls, O.: Inverse dynamics of serial and parallel underactuated multibody system using a DAE optimal control approach. Multibody Sys. Dyn. 30, 359–376 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baumgarte, J.: Stabilization of constraints and integrals of motion. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)CrossRefGoogle Scholar
  4. 4.
    Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM, Philadelphia (2010)CrossRefGoogle Scholar
  5. 5.
    Björkenstam, S., Carlson, J.S., Lennartson, B.: Exploiting sparsity in the discrete mechanics and optimal control method with application to human motion planning. In: Proceedings of 11th IEEE International Conference on Automation Science and Engineering, Gothenburg, pp. 769–774 (2015)Google Scholar
  6. 6.
    Diehl, M., Bock, H., Diedam, H., Wieber, P.B.: Fast direct multiple shooting algorithms for optimal robot control. In: Diehl M., Mombaur, K. (eds.) Fast Motions in Biomechanics and Robotics. Lecture Notes in Control and Information Sciences, vol. 340. Springer, Berlin/New York (2006)CrossRefGoogle Scholar
  7. 7.
    Docquier, N., Poncelet, A., Fisette, P.: Robotran: a powerful symbolic generator of multibody models. Mech. Sci. 4, 199–219 (2013)CrossRefGoogle Scholar
  8. 8.
    Fisette, P.: Génération Symbolique des Equations du Mouvement de Systèmes Multicorps et Application dans le Domaine Ferroviaire. Ph.D. thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium (1994)Google Scholar
  9. 9.
    Fisette, P., Samin, J.C.: Symbolic generation of large multibody system dynamic equations using a new semi-explicit Newton/Euler recursive scheme. Arch. Appl. Mech. 66, 187–199 (1996)CrossRefGoogle Scholar
  10. 10.
    Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Other Titles in Applied Mathematics, vol. 105. SIAM, Philadelphia (2008)Google Scholar
  11. 11.
    Gros, S., Zanon, M., Diehl, M.: Nonlinear MPC and MHE for mechanical multi-body systems with application to fast tethered airplanes. In: IFAC Conference on Nonlinear Model Predictive Control, Noordwijkerhout, pp. 86–93 (2012)CrossRefGoogle Scholar
  12. 12.
    Iwamura, M., Eberhard, P., Schiehlen W., Seifried R.: A general purpose algorithm for optimal trajectory planning of closed loop multibody systems. In: Arczewski, K. (ed.) Multibody Dynamics: Computational Methods and Applications. Computational Methods in Applied Sciences, vol. 23. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  13. 13.
    Luh, J.-Y.-S., Walker, N.-W., Paul, R.-P.-C.: On-line computational scheme for mechanical manipulators. J. Dyn. Syst. Meas. Control 102, 69–76 (1980)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Manara, S., Gabiccini, M., Artoni, A., Diehl, M.: On the integration of singularity-free representations of SO(3) for direct optimal control. Nonlinear Dyn. 90, 1223–1241 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Samin, J.C., Fisette, P.: Symbolic Modeling of Multibody Systems. Kluwer, Dordrecht (2003)CrossRefGoogle Scholar
  16. 16.
    Schwertassek, R., Rulka, W.: Aspects of efficient and reliable multibody systems simulation. In: Haug, E.J., Deyo, R.C. (eds.) Real-Time Integration Methods for Mechanical System Simulation. NATO ASI Series F, vol. 69, pp. 55–96. Springer, Berlin/Heidelberg (1989)zbMATHGoogle Scholar
  17. 17.
    Siebert, R., Betsch, P.: A Hamiltonian conserving indirect optimal control method for multibody dynamics. In: Proceedings in Applied Mathematics and Mechanics, vol. 12. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012)CrossRefGoogle Scholar
  18. 18.
    Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., Diehl M.: Time-energy optimal path tracking for robots: a numerically efficient optimization approach. In: 10th IEEE International Workshop on Advanced Motion Control, Trento, pp. 727–732 (2008)Google Scholar
  19. 19.
    von Stryk, O., Schlemmer, M.: Optimal control of the industrial robot manutec R3. In: Bulirsch, R. (ed.) Computational Optimal Control. ISNM International Series of Numerical Mathematics, vol. 115. Birkhäuser, Basel/Boston (1994)zbMATHGoogle Scholar
  20. 20.
    Wächter, A.: An interior point algorithm for large-scale nonlinear optimization with applications in process engineering, Ph.D. thesis, Carnegie Mellon University (2002)Google Scholar
  21. 21.
    Wehage, R.-A., Haug, E.-J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 134, 247–255 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Quentin Docquier
    • 1
    Email author
  • Olivier Brüls
    • 2
  • Paul Fisette
    • 1
  1. 1.Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Université de LiègeLiègeBelgium

Personalised recommendations