Advertisement

Selected Challenges in Realistic Multibody Modeling of Machines and Vehicles

  • Jorge AmbrósioEmail author
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 33)

Abstract

Multibody modelling involves taking fundamental decisions during the multibody model construction that not only condition its validity for the particular application foreseen but also have fundamental implications on the suitability of the numerical methods used on its analysis. The decision on allowing a particular flexible body to exhibit linear or nonlinear deformations or even to consider it part of the multibody system or as a structural component with which the system interacts is a crucial part of the modeling process. The description of the kinematic relations between moving components can be represented by perfect kinematic constraints or by contact pairs, as when local effects in the joints, generally associated with deviations from nominal conditions or to functional features, must be considered. The interaction of the multibody model with the ‘environment’ may require a substantial modelling effort that involves decisions on geometric description of features, on contact mechanics or even on numerical methodologies to handle co-simulation of systems with equilibrium equations that are solved with different numerical methods. Several areas are transversal to all the challenges identified and discussed here. The suitability of the numerical time integrators not only to handle the multibody model assumptions but also their interaction with other systems are of fundamental importance in the correct solution of the system dynamics. Descriptive and differential geometry also plays a very important role not only in the description of the relative kinematics of the systems but also in the modelling of the interactions.

Keywords

Geometry Look-up-table Clearance joints Contact mechanics Numerical integration 

References

  1. 1.
    Hooker, W., Margulies, G.: The dynamical attitude equations for n-body satellite. J. Astronaut. Sci. 12, 123–128 (1965)MathSciNetGoogle Scholar
  2. 2.
    Kane, T., Scher, M.: A dynamical explanation of the falling cat phenomenon. Int. J. Solids Struct. 5(7), 663–670 (1969)CrossRefGoogle Scholar
  3. 3.
    Kane, T., Scher, M.: Human self-rotation by means of limb movements. J. Biomech. 3(1), 39–49 (1970)CrossRefGoogle Scholar
  4. 4.
    Wittenburg, J.: The dynamics of systems of coupled rigid bodies. A new general formalism with applications. In: Grioli, G. (ed.) Stereodynamics. Edizione Cremonese, Roma (1971)Google Scholar
  5. 5.
    Wittenburg, J., Wolz, U., Schmidt, A.: MESA VERDE – a general-purpose program package for symbolical dynamics simulations of multibody systems. In: Schiehlen, W. (ed.) Multibody Systems Handbook. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Magnus, K.: Dynamics of Multibody Systems. Proceedings of the IUTAM Symposium, Munich, Germany, August 29 – September 3, 1977, Springer, Heidelberg (1978)Google Scholar
  7. 7.
    Haug, E.J. (ed.): Computer Aided Analysis and Optimization of Mechanical Systems Dynamics. Springer-Verlag, Heidelberg (1984)zbMATHGoogle Scholar
  8. 8.
    Bianchi, G., Schiehlen, W. (eds.): Dynamics of Multibody Systems, Proceedings of the IUTAM/IFToMM Symposium, Udine, Italy, September 16–20, 1985. Springer, Heidelberg (1986)Google Scholar
  9. 9.
    Pereira, M., Ambrosio, J. (eds.): Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, NATO Science Series E, vol. 268. Springer, Dordrecht (1994)Google Scholar
  10. 10.
    Schiehlen, W.: Multibody dynamics: roots and perspectives. Multi-body Syst. Dyn. 1(2), 149–188 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wittenburg, J.: Dynamics of Systems of Rigid Bodies. Teubner-Verlag, Wiesbaden (1977)zbMATHCrossRefGoogle Scholar
  12. 12.
    Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)Google Scholar
  13. 13.
    Kane, T., Levinson, D.: Dynamics: Theory and Applications. McGraw-Hill, San Francisco (1985)Google Scholar
  14. 14.
    Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)Google Scholar
  15. 15.
    Jalon, G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1994)CrossRefGoogle Scholar
  16. 16.
    Erdman, A.G., Sandor, G.N.: Kineto-elastodynamics – a review of the state of the art and trends. Mech. Mach. Theory. 7, 19–33 (1972)CrossRefGoogle Scholar
  17. 17.
    Lowen, G.G., Chassapis, C.: Elastic behavior of linkages: an update. Mech. Mach. Theory. 21, 33–42 (1986)CrossRefGoogle Scholar
  18. 18.
    Thompson, B.S., Sung, G.N.: Survey of finite element techniques for mechanism design. Mech. Mach. Theory. 21, 351–359 (1986)CrossRefGoogle Scholar
  19. 19.
    Song, J.O., Haug, E.J.: Dynamic analysis of planar flexible mechanisms. Comput. Methods Appl. Mech. Eng. 24, 359–381 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Shabana, A.: Dynamics of Multibody Systems. Wiley, New York (1989)zbMATHGoogle Scholar
  21. 21.
    Shabana, A., Wehage, R.: A coordinate reduction technique for transient analysis of spatial structures with large angular rotations. J. Struct. Mech. 11, 401–431 (1989)CrossRefGoogle Scholar
  22. 22.
    Meirovitch, L., Nelson, H.D.: On the high-spin motion of a satellite containing elastic parts. J. Spacecr. Rocket. 3, 1597–1602 (1966)CrossRefGoogle Scholar
  23. 23.
    Modi, V., Suleman, A., Ng, A.: An approach to dynamics and control of orbiting flexible structures. Int. J. Numer. Methods Eng. 32, 1727–1748 (1991)zbMATHCrossRefGoogle Scholar
  24. 24.
    Banerjee, A.K., Nagarajan, S.: Efficient simulation of large overall motion of nonlinearly elastic beams. In: Proceedings of ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA, Noordwijk, The Netherlands (1996)Google Scholar
  25. 25.
    Kane, T., Ryan, R., Banerjee, A.: Dynamics of a cantilever beam attached to a moving base. AIAA J. Guid. Control Dyn. 10, 139–151 (1987)CrossRefGoogle Scholar
  26. 26.
    Wallrapp, O., Schwertassek, R.: Representation of geometric stiffening in multibody system simulation. Int. J. Numer. Methods Eng. 32, 1833–1850 (1991)zbMATHCrossRefGoogle Scholar
  27. 27.
    Geradin, M.: Advanced methods in flexible multibody dynamics: review of element formulations and reduction methods. In: Proceedings of ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA, Noordwijk, The Netherlands (1996)Google Scholar
  28. 28.
    Belytschko, T., Hsieh, B.J.: Nonlinear transient finite element analysis with convected coordinates. Int. J. Numer. Methods Eng. 7, 255–271 (1973)zbMATHCrossRefGoogle Scholar
  29. 29.
    Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions – a geometrically exact approach. Comp. Methods Appl. Mech. Eng. 66, 125–161 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Bathe, K.-J., Bolourchi, S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14, 961–986 (1979)zbMATHCrossRefGoogle Scholar
  31. 31.
    Cardona, A., Geradin, M.: A beam finite element non linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)zbMATHCrossRefGoogle Scholar
  32. 32.
    Geradin, M., Cardona, A.: A modelling of superelements in mechanism analysis. Int. J. Numer. Methods Eng. 32, 1565–1594 (1991)zbMATHCrossRefGoogle Scholar
  33. 33.
    Shabana, A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multi-body Syst. Dyn. 1, 339–348 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Ambrósio, J., Nikravesh, P.: Elastic-plastic deformations in multibody dynamics. Nonlinear Dyn. 3, 85–104 (1992)CrossRefGoogle Scholar
  35. 35.
    Ambrósio, J.: Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)zbMATHCrossRefGoogle Scholar
  36. 36.
    Pereira, M.S., Ambrósio, J.: Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles. Int. J. Numer. Methods Eng. 40(4), 655–687 (1997)zbMATHCrossRefGoogle Scholar
  37. 37.
    Shabana, A.: Flexible multibody dynamics: review of past and recent developments. Multi-body Syst. Dyn. 1(2), 189–222 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Geradin, M., Cardona, E.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)Google Scholar
  39. 39.
    Bauchau, O.: Flexible Multibody Dynamics. Springer, Dordrecht (2011)zbMATHCrossRefGoogle Scholar
  40. 40.
    Bremer, H.: Elastic Multibody Dynamics: A Direct Ritz Approach. Springer, Dordrecht (2008)zbMATHCrossRefGoogle Scholar
  41. 41.
    Gonzalez-Palacios, M., Angeles, J.: Cam Synthesis. Springer, Dordrecht (1993)zbMATHCrossRefGoogle Scholar
  42. 42.
    Gonzalez-Palacios, M., Angeles, J.: Synthesis of contact surfaces of spherical cam-oscillating roller-follower mechanisms. ASME J. Mech. Des. 116(1), 315–319 (1994)CrossRefGoogle Scholar
  43. 43.
    Pombo, J., Ambrósio, J.: General spatial curve joint for rail guided vehicles: kinematics and dynamics. Multi-body. Syst. Dyn. 9(3), 237–264 (2003)zbMATHCrossRefGoogle Scholar
  44. 44.
    Ambrósio, J., Antunes, P., Pombo, J.: On the requirements of interpolating polynomials for path motion constraints. In: Kecskeméthy, A., Geu Flores, F. (eds.) Interdisciplinary Applications of Kinematics: Proceedings of the International Conference, pp. 179–197. Springer, Dordrecht (2015)Google Scholar
  45. 45.
    Tändl, M., Kecskemethy, A.: Singularity-free trajectory tracking with Frenet frames. In: Husty, M., Schroecker, H.-P. (eds.) Proceedings of the 1st Conference EuCoMeS. Innsbruck University Press, Obergurgl (2006)Google Scholar
  46. 46.
    Tändl, M.: Dynamic Simulation and Design of Roller Coaster Motion. VDI Verlag, Düsseldorf (2009)Google Scholar
  47. 47.
    Flores, P., Ambrósio, J., Pimenta Claro, J., Lankarani, H.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints. Springer, Dordrecht (2008)zbMATHGoogle Scholar
  48. 48.
    Ambrósio, J., Verissimo, P.: Improved bushing models for vehicle dynamics. Multi-body Syst. Dyn. 22(4), 341–365 (2009)zbMATHCrossRefGoogle Scholar
  49. 49.
    Magalhaes, H., Ambrósio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(3), 251–267 (2016)Google Scholar
  50. 50.
    Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multi-body Syst. Dyn. 42(3), 317–345 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multi-body Syst. Dyn. 42(3), 249–282 (2018)zbMATHCrossRefGoogle Scholar
  52. 52.
    Ambrósio, J.: Efficient kinematic joints descriptions for flexible multibody systems experiencing linear and non-linear deformations. Int. J. Numer. Methods Eng. 56, 1771–1793 (2003)zbMATHCrossRefGoogle Scholar
  53. 53.
    Masarati, P., Morandini, M.: Intrinsic deformable joints. Multi-body Syst. Dyn. 23, 361–386 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Cardona, A., Geradin, M., Doan, D.B.: Rigid and flexible joint modelling in multibody dynamics using finite elements. Comput. Methods Appl. Mech. Eng. 89(1–3), 395–418 (1991)CrossRefGoogle Scholar
  55. 55.
    Bae, D., Han, J., Choi, J.: An implementation method for constrained flexible multibody dynamics using virtual body and joint. Multi-body Syst. Dyn. 4, 207–226 (2000)zbMATHGoogle Scholar
  56. 56.
    Gonçalves, J., Ambrósio, J.: Advanced modeling of flexible multibody dynamics using virtual bodies. Comput. Assist. Mech. Eng. Sci. 9(3), 373–390 (2002)zbMATHGoogle Scholar
  57. 57.
    Mashayekhi, M., Kövecses, J.: A comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problem. Multi-body Syst. Dyn. 40(4), 327–345 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Blumentals, A., Brogliato, B., Bertails-Descoubes, F.: The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multi-body Syst. Dyn. 38(1), 43–76 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Zhao, Z., Liu, C.: Contact constraints and dynamical equations in Lagrangian systems. Multi-body Syst. Dyn. 38(1), 77–99 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multi-body Syst. Dyn. 23(2), 165–190 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Kwak, S.D., Blankevoort, L., Ateshian, G.A.: A mathematical formulation for 3D quasi-static multibody models of diarthrodial joints. Comput. Methods Biomech. Biomed. Eng. 3, 41–64 (2000)CrossRefGoogle Scholar
  62. 62.
    Beia, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26(9), 777–789 (2004)CrossRefGoogle Scholar
  63. 63.
    Machado, M., Flores, P., Pimenta Claro, J.C., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010)zbMATHCrossRefGoogle Scholar
  64. 64.
    Anand, V.: Computer Graphics and Geometric Modeling for Engineers. Wiley, New York (1996)Google Scholar
  65. 65.
    Frenet, F.: Sur les courbes à double courbure. J. Math. Pures Appl. 17, 437–447 (1852)Google Scholar
  66. 66.
    Machado, M., Flores, P., Ambrósio, J.: A lookup table-based approach for spatial analysis of contact problems. J. Comput. Nonlinear Dyn. 9(1), 1–10 (2014)Google Scholar
  67. 67.
    Viegas, M., Ambrósio, J., Antunes, P., Magalhães, H.: Dynamics of a roller coaster vehicle. In: Spriyagin, M., Gordon, T., Cole, C., McSweeney, T. (eds.) Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017), Volume 2, pp. 551–556. CRC Press, Taylor and Francis, London (2017)Google Scholar
  68. 68.
    Kikuuwe, R., Brogliato, B.: A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation. Multi-body Syst. Dyn. 39(3), 267–290 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multi-body Syst. Dyn. 24(1), 103–122 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Haddouni, M., Acary, V., Garreau, S., Beley, J.-D., Brogliato, B.: Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics. Multi-body Syst. Dyn. 41(3), 201–231 (2017)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Pombo, J., Ambrósio, J.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multi-body Syst. Dyn. 19(1), 91–114 (2008)zbMATHCrossRefGoogle Scholar
  72. 72.
    Pacejka, H.: Tyre and Vehicle Dynamics, 3rd edn. Butterworth-Heinemann, Amsterdam (2012)Google Scholar
  73. 73.
    Hirschberg, W., Rill, G., Weinfurter, H.: Tire model TMeasy. Veh. Syst. Dyn. 45(1), 101–119 (2007)CrossRefGoogle Scholar
  74. 74.
    Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Springer, Dordrecht (1990)zbMATHCrossRefGoogle Scholar
  75. 75.
    Harris, T., Kotzalas, M.: Advanced Concepts of Bearing Technology. CRC Press, Boca Raton (2007)Google Scholar
  76. 76.
    Lankarani, H., Nikravesh, P.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994)Google Scholar
  77. 77.
    Hunt, K.H., Grossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME J. Appl. Mech. 7, 440–445 (1975)CrossRefGoogle Scholar
  78. 78.
    Ambrósio, J.: Rigid and flexible multibody dynamics tools for the simulation of systems subjected to contact and impact conditions. Eur. J. Solids A Solids. 19(S), 23–44 (2000)Google Scholar
  79. 79.
    Marques, F., Flores, P., Pimenta Claro, J., Lankarani, H.: A survey of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Bengisu, M.T., Akay, A.: Stability of friction-induced vibrations in multi-degree-of-freedom systems. J. Sound Vib. 171, 557–570 (1994)zbMATHCrossRefGoogle Scholar
  81. 81.
    Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)zbMATHCrossRefGoogle Scholar
  82. 82.
    Gupta, P.K.: Advanced Dynamics of Rolling Elements. Springer, New York (1984)CrossRefGoogle Scholar
  83. 83.
    Haines, D., Ollerton, E.: Contact stress distribution on elliptical contact surfaces subjected to radial and tangential forces. Proc. Inst. Mech. Eng. 177, 95–114 (1963)CrossRefGoogle Scholar
  84. 84.
    Magalhães, H., Madeira, J., Ambrósio, J., Pombo, J.: Railway vehicle performance optimization using virtual homologation. Veh. Syst. Dyn. 54(9), 1177–1207 (2016)CrossRefGoogle Scholar
  85. 85.
    Polach, O.: A fast wheel-rail forces calculation computer code. Veh. Syst Dyn. 33, 782–739 (1999)Google Scholar
  86. 86.
    Ayasse, J., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43, 161–172 (2005)CrossRefGoogle Scholar
  87. 87.
    Sichani, M.S., Enblom, R., Berg, M.: A novel method to model wheel-rail normal contact in vehicle dynamics simulation. Veh. Syst. Dyn. 52, 1752–1764 (2014)CrossRefGoogle Scholar
  88. 88.
    Piotrowski, J., Liu, B., Bruni, S.: The Kalker book of tables for non-Hertzian contact of wheel and rail. Veh. Syst. Dyn. 55(6), 875–901 (2017)CrossRefGoogle Scholar
  89. 89.
    Escalona, J., Aceituno, J.: Modeling wheel-rail contact with pre-calculated lookup tables in arbitrary-geometry tracks with irregularities. In: ASME Proceedings of the 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Boston, Massachusetts, USA, August 2–5, Paper No. DETC2015-47306 (2015)Google Scholar
  90. 90.
    Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multi-body Syst. Dyn. 38(4), 367–389 (2016)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multi-body Syst. Dyn. 40(4), 407–436 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Wang, G., Qi, Z., Wang, J.: A differential approach for modeling revolute clearance joints in planar rigid. Multi-body Syst. Dyn. 39(4), 311–335 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Masoudi, R., Uchida, T., Vilela, D., Luaces, A., Cuadrado, J., McPhee, J.: A library of computational benchmark problems for the multibody dynamics community. In: Terze, Z. (ed.) Proceedings of ECCOMAS Multibody Dynamics., 1–4 July, pp. 1153–1162. University of Zagreb, Croatia (2013)Google Scholar
  94. 94.
    Ambrósio, J., Pombo, J.: MUltiBOdy Dynamic Analysis Program – MUBODyn: User’s Manual, Technical Report IDMEC-CPM. Instituto de Engenharia Mecânica, Instituto Superior Técnico, University of Lisbon, Lisbon (2016)Google Scholar
  95. 95.
    Gear, G.: Numerical simulation of differential-algebraic equations. IEEE Trans. Circ Theory. 18, 89–95 (1981)CrossRefGoogle Scholar
  96. 96.
    Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)zbMATHGoogle Scholar
  97. 97.
    Ambrósio, J., Malça, C., Ramalho, A.: Planar roller chain drive dynamics using a cylindrical contact force model. Mech. Based Des. Struct. Mach. 44(1–2), 109–122 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IDMEC, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal

Personalised recommendations