Advertisement

SiloMAS: A MAS for Smart Silos to Optimize Food and Water Consumption on Livestock Holdings

  • Sergio Marquez
  • Roberto Casado-Vara
  • Alfonso González-BrionesEmail author
  • Javier Prieto
  • Juan M. Corchado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 802)

Abstract

A few years ago, hitting the silo container from the outside was the only way of knowing whether it had to be refilled with feed or water. However, current advances make it possible to develop more evolved mechanisms that not only allow the farmer to know if it is necessary to fill the silo with feed but give a precise estimate of the quantity of feed or water remaining in the silo and information on other parameters that help control the quality of the feed. To this end, it is necessary to design a device that will be placed on the inside of the silo and will detect if there is feed and how much of it by means of a sensor with ultrasonic technology. The prototype includes several motion engines which perform a complete sweep for the calculation of volume; this is important as each type of feed has a different density. In addition, the development of such a system will make it possible to optimize the delivery of feed to livestock holdings through route planning for the truck, for example, in cases where two nearby farms are short of supply.

For this purpose, we have developed a system that incorporates an IoT device with a laser for calculating the volume of feed inside a silo. In addition, this system includes a series of sensors that can monitor temperature and humidity. Thus, the owners obtain more information from which they can draw conclusions about the conservation of the feed and about its general exploitation. Furthermore, it is possible to understand to what extent the cold and humidity affect animals and their consumption of the feed. This research work describes the evaluation of the developed prototype in several independent silos on the Hermi Group’s farm (Salamanca) and outlines the obtained results.

Keywords

Sensor-based monitoring Smart silo IoT Ambiental intelligent Agents 

Notes

Acknowledgements

This work has been partially supported by the Agreement between the Agricultural Technology Institute of Castile and León, Hermi Gestión, S.L., and the University of Salamanca to conduct research activities for the development of a farm 4.0 model in the rabbit meat production sector.

References

  1. 1.
    González-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., Corchado, J.M.: Energy optimization using a case-based reasoning strategy. Sensors 18(3), 865 (2018)CrossRefGoogle Scholar
  2. 2.
    González-Briones, A., Chamoso, P., De La Prieta, F., Demazeau, Y., Corchado, J.M.: Agreement technologies for energy optimization at home. Sensors 18(5), 1633 (2018)CrossRefGoogle Scholar
  3. 3.
    González-Briones, A., Castellanos-Garzón, J.A., Mezquita Martín, Y., Prieto, J., Corchado, J.M.: A framework for knowledge discovery from wireless sensor networks in rural environments: a crop irrigation systems case study. Wirel. Commun. Mob. Comput. 2018 (2018)Google Scholar
  4. 4.
    González-Briones, A., Chamoso, P., Yoe, H., Corchado, J.M.: GreenVMAS: virtual organization based platform for heating greenhouses using waste energy from power plants. Sensors 18(3), 861 (2018)CrossRefGoogle Scholar
  5. 5.
    González-Briones, A., Prieto, J., Corchado, J.M., Demazeau, Y.: EnerVMAS: virtual agent organizations to optimize energy consumption using intelligent temperature calibration. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 387–398. Springer, Cham (2018)Google Scholar
  6. 6.
    Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. 2018 (2018)Google Scholar
  7. 7.
    González-Briones, A., Chamoso, P., Prieto, J., Corchado, J.M., Yoe, H.: Reuse of wasted thermal energy in power plants for agricultural crops by means of multi-agent approach. In: 2018 International Conference on Smart Energy Systems and Technologies (SEST), Sevilla, Spain, 2018, pp. 1–6 (2018)Google Scholar
  8. 8.
    González-Briones, A., De La Prieta, F., Mohamad, M., Omatu, S., Corchado, J.: Multi-agent systems applications in energy optimization problems: a state-of-the-art review. Energies 11(8), 1928 (2018)CrossRefGoogle Scholar
  9. 9.
    Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M.: How blockchain improves the supply chain: case study alimentary supply chain. Procedia Comput. Sci. 134, 393–398 (2018)CrossRefGoogle Scholar
  10. 10.
    González-Briones, A., Villarrubia, G., De Paz, J.F., Corchado, J.M.: A multi-agent system for the classification of gender and age from images. Comput. Vis. Image Underst. 172, 98–106 (2018)CrossRefGoogle Scholar
  11. 11.
    Corchado, J.M., Ramos, J., De Paz, J.F., González-Briones, A.: Multi-agent system for obtaining relevant genes in expression analysis between young and older women with triple negative breast cancer. J. Integr. Bioinform. 12(4), 1–14 (2015)CrossRefGoogle Scholar
  12. 12.
    Casado-Vara, R., González-Briones, A., Prieto, J., Corchado, J.M.: Smart contract for monitoring and control of logistics activities: pharmaceutical utilities case study. In: The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 509–517. Springer, Cham (2018)Google Scholar
  13. 13.
    Casado-Vara, R., Chamoso, P., Coria, J.A.G., Herrera-Viedma, E., Corchado, J.M.: GarbMAS: simulation of the application of gamification techniques to increase the amount of recycled waste through a multi-agent system. In: Distributed Computing and Artificial Intelligence, 15th International Conference, vol. 800, p. 332. Springer, Cham (2018)Google Scholar
  14. 14.
    Casado-Vara, R., de la Prieta, F., Prieto, J., Corchado, J.M.: Blockchain framework for IoT data quality via edge computing. In: Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems, pp. 19–24. ACM, November 2018Google Scholar
  15. 15.
    Briones, A.G., Chamoso, P., Barriuso, A.: Review of the main security problems with multi-agent systems used in e-commerce applications. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 5(3), 55–61 (2016)CrossRefGoogle Scholar
  16. 16.
    Briones, A.G., Chamoso, P., Rivas, A., Rodríguez, S., Yoe, H., Corchado, J.M.: A MAS Based Architecture to Reuse Waste Energy From Power Plants in Indoor Peppers Cultivation (2018)Google Scholar
  17. 17.
    Briones, A.G., Chamoso, P., Rivas, A., Rodríguez, S., De La Prieta, F., Prieto, J., Corchado, J.M.: Use of gamification techniques to encourage garbage recycling. a smart city approach. In: International Conference on Knowledge Management in Organizations, pp. 674–685. Springer, Cham (2018)Google Scholar
  18. 18.
    İşiker, H., Canbolat, H.: Concept for a novel grain level measurement method in silos. Comput. Electron. Agric. 65(2), 258–267 (2009)CrossRefGoogle Scholar
  19. 19.
    Sakharov, V.E., Kuznetsov, S.A., Zaitsev, B.D., Kuznetsova, I.E., Joshi, S.G.: Liquid level sensor using ultrasonic lamb waves. Ultrasonics 41(4), 319–322 (2003)CrossRefGoogle Scholar
  20. 20.
    Vázquez, C., Gonzalo, A.B., Vargas, S., Montalvo, J.: Multi-sensor system using plastic optical fibers for intrinsically safe level measurements. Sens. Actuators, A 116(1), 22–32 (2004)CrossRefGoogle Scholar
  21. 21.
    Woodard, S.E., Taylor, B.D.: A wireless fluid-level measurement technique. Sens. Actuators, A 137(2), 268–278 (2007)CrossRefGoogle Scholar
  22. 22.
    Jian, F., Jayas, D.S., White, N.D.: Temperature fluctuations and moisture migration in wheat stored for 15 months in a metal silo in Canada. J. Stored Prod. Res. 45(2), 82–90 (2009)CrossRefGoogle Scholar
  23. 23.
    Casado-Vara, R., Corchado, J.M.: Blockchain for democratic voting: how blockchain could cast off voter fraud. Orient. J. Comp. Sci. Technol. 11(1) (2018)CrossRefGoogle Scholar
  24. 24.
    Casado-Vara, R., Prieto, J., Corchado, J.M.: How blockchain could improve fraud detection in power distribution grid. In: The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 67–76. Springer, Cham (2018)zbMATHGoogle Scholar
  25. 25.
    Casado-Vara, R., Novais, P., Gil, A.B., Prieto, J., Corchado, J.M.: Distributed continuous-time fault estimation control for multiple devices in IoT networks. IEEE Access 7, 11972–11984 (2019)CrossRefGoogle Scholar
  26. 26.
    Chamoso, P., González-Briones, A., Rivas, A., De La Prieta, F., Corchado, J.M.: Social computing in currency exchange. Knowl. Inf. Syst. 1–21 (2019)Google Scholar
  27. 27.
    Casado-Vara, R., Prieto-Castrillo, F., Corchado, J.M.: A game theory approach for cooperative control to improve data quality and false data detection in WSN. Int. J. Robust Nonlinear Control 28(16), 5087–5102 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl. Based Syst. 137, 54–64 (2017)CrossRefGoogle Scholar
  29. 29.
    Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Sig. Process. 119, 115–127 (2016).  https://doi.org/10.1016/j.sigpro.2015.07.013CrossRefGoogle Scholar
  30. 30.
    Chamoso, P., Rodríguez, S., de la Prieta, F., Bajo, J.: Classification of retinal vessels using a collaborative agent-based architecture. AI Commun. (Preprint), 1–18 (2018)Google Scholar
  31. 31.
    Gonzalez-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., Corchado, J.M.: Energy optimization using a case-based reasoning strategy. Sensors (Basel) 18(3), 865–865 (2018).  https://doi.org/10.3390/s18030865CrossRefGoogle Scholar
  32. 32.
    Gonzalez-Briones, A., Chamoso, P., De La Prieta, F., Demazeau, Y., Corchado, J.M.: Agreement technologies for energy optimization at home. Sensors (Basel) 18(5), 1633–1633 (2018).  https://doi.org/10.3390/s18051633CrossRefGoogle Scholar
  33. 33.
    Gazafroudi, A.S., Corchado, J.M., Kean, A., Soroudi, A.: Decentralized Flexibility Management for Electric Vehicles. IET Renewable Power Generation (2019). http://ietdl.org/t/IBgIPb
  34. 34.
    Gazafroudi, A.S., Soares, J., Ghazvini, M.A.F., Pinto, T., Vale, Z., Corchado, J.M.: Stochastic interval-based optimal offering model for residential energy management systems by household owners. Int. J. Electr. Power Energy Syst. 105, 201–219 (2019)CrossRefGoogle Scholar
  35. 35.
    Dang, N.C., de la Prieta, F., Corchado, J.M., Moreno, M.N.: Framework for retrieving relevant contents related to fashion from online social network data. In: PAAMS (Special Sessions), pp. 335–347 (2016)Google Scholar
  36. 36.
    Omatu, S., Wada, T., Rodríguez, S., Chamoso, P., Corchado, J.M.: Multi-agent technology to perform odor classification. ISAmI 291, 241–252 (2014)Google Scholar
  37. 37.
    Román, J.Á., Rodríguez, S., Corchado, S.: Improving intelligent systems: specialization. In: PAAMS (Workshops), pp. 378–385 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergio Marquez
    • 1
  • Roberto Casado-Vara
    • 1
  • Alfonso González-Briones
    • 1
    • 2
    Email author
  • Javier Prieto
    • 1
  • Juan M. Corchado
    • 1
    • 2
    • 3
    • 4
  1. 1.BISITE Research GroupUniversity of Salamanca, Edificio I+D+iSalamancaSpain
  2. 2.Air Institute, IoT Digital Innovation HubSalamancaSpain
  3. 3.Department of Electronics, Information and Communication, Faculty of EngineeringOsaka Institute of TechnologyOsakaJapan
  4. 4.Pusat Komputeran dan InformatikUniversiti Malaysia KelantanKota BharuMalaysia

Personalised recommendations