Advertisement

3D GPU SPH Analysis of Coupled Sloshing and Roll Motion

  • Luis Pérez RojasEmail author
  • Jose L. Cercos Pita
Chapter
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 119)

Abstract

The coupled roll motion response of a single degree of freedom system to which a passive anti-roll tank has been attached is considered and its performance studied numerically with a 3D GPU SPH code, aimed at simulating the sloshing flows occurring inside the tank. Results are compared with experiments from Bulian et al. (2010), in which 2D simulations were also presented. Progress achieved thereafter is documented, mainly consisting in the implementation of a parallelized solver that runs on a GPU card, which allows the simulation of low resolution 3D and high resolution 2D computations.

Keywords

SPH Anti-roll tanks Single degree of freedom systems SDOF GPU Sloshing 

Notes

Acknowledgements

The research leading to these results has received funding from the Spanish Ministry for Science and Innovation under grant TRA2010-16988, “Caracterización Numérica y Experimental de las Cargas Fluido-Dinámicas en el transporte de Gas Licuado”.

References

  1. Antuono A, Souto-Iglesias A, Le Touzé D (2011) Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows. Phys. Rev. E 84:26705+Google Scholar
  2. Attari N K A, Rofooei F R (2008) On lateral response of structures containing a cylindrical liquid tank under the effect of fluid/structure resonances. J. Sound Vibration 318: 4–5, 1154–1179CrossRefGoogle Scholar
  3. Bulian G, Souto-Iglesias A, Delorme L, Botia-Vera E (2010) SPH simulation of a tuned liquid damper with angular motion. J. Hydraul. Res. 48: 28–39Google Scholar
  4. Cercos Pita J L (2015) AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL. Comput. Phys. Commun. 192: 295–312MathSciNetCrossRefGoogle Scholar
  5. Crespo A J C, Dominguez J M, Rogers  B D, Gómez-Gesteira S, Longshaw R, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH) Comput. Phys. Commun. 187: 204–216CrossRefGoogle Scholar
  6. Harada T, Koshizuka S, Kawaguchi Y (2007) Smoothed particle hydrodynamics on GPUs. Proceedings of the Computer Graphics International Conference 63–70Google Scholar
  7. Herault A, Bilotta G, Dalrymple R A (2010) SPH on GPU with CUDA. Journal of Hydraulic Research 48:74–79CrossRefGoogle Scholar
  8. Hu X Y, Adams N A (2006) Angular-momentum conservative Smoothed Particle Hydrodynamics for incompressible viscous flows. Phys. Fluids 18:702–706Google Scholar
  9. Landrini M, Colagrossi A, Faltinsen O M (2003) Sloshing in 2D flows by the SPH method. Proceedings of the 8th International Conference on Numerical Ship HydrodynamicsGoogle Scholar
  10. Macia F, Antuono M, Gonzalez L M, Colagrossi A (2011) Theoretical analysis of the no-slip boundary condition enforcement in SPH methods. Progr. Theoret. Phys. 125: 1091–1121CrossRefGoogle Scholar
  11. Monaghan J J (1994) Simulating free surface flows with SPH. J. Comput. Phys 110: 399–406MathSciNetCrossRefGoogle Scholar
  12. Monaghan J J (2012) Smoothed particle hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech. 44:323–46MathSciNetCrossRefGoogle Scholar
  13. Monaghan J J, Gingold R A (1983) Shock simulation by the particle method SPH. J. Comput. Phys 52: 374–389CrossRefGoogle Scholar
  14. Nam B-W, Kim Y, Kim D-W, Kim Y-S (2009) Experimental and numerical studies on ship motion responses coupled with sloshing in waves. J. Ship. Res. 53:68–82Google Scholar
  15. Rey-Villaverde A, Cercos Pita J L, Souto-Iglesias A, Gonzalez L M (2011) Particle methods parallel implementations by GP-GPU strategies. Proceedings of the II International Conference on Particle-based Methods - Fundamentals and Applications, PARTICLES 2011Google Scholar
  16. Souto-Iglesias A, Botia-Vera E, Martin A, Perez-Arribas F (2011) A set of canonical problems in sloshing part 0: Experimental setup and data processing. Ocean Eng. 38: 1823–1830CrossRefGoogle Scholar
  17. Souto-Iglesias A, Delorme L, Rojas P L, Abril S (2006) Liquid moment amplitude assessment in sloshing type problems with SPH. Ocean Eng. 33: 11–12Google Scholar
  18. Tait M J, El Damatty A A, Isyumov N (2005) An investigation of Tuned Liquid Dampers Equipped with Damping Screens under 2D Excitation. Earthq. Eng. Struct. D. 34(7):719–735CrossRefGoogle Scholar
  19. Violeau D, Rogers B D (2016) Smoothed Particle Hydrodynamics (SPH) for free-surface flows: past, present and future. J. Hydraul. Res. 54:1 1–26CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CEHINAV, ETSIN, UPMMadridSpain

Personalised recommendations