Advertisement

A Patch-Based Segmentation Approach with High Level Representation of the Data for Cortical Sulci Recognition

  • Léonie Borne
  • Jean-François Mangin
  • Denis Rivière
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11075)

Abstract

Because of the strong variability of the cortical sulci, their automatic recognition is still a challenging problem. The last algorithm developed in our laboratory for 125 sulci reaches an average recognition rate around 86%. It has been applied to thousands of brains for morphometric studies (www.brainvisa.info). A weak point of this approach is the modeling of the training dataset as a single template of sulcus-wise probability maps, losing information about the alternative patterns of each sulcus. To overcome this limit, we propose a different strategy inspired by Multi-Atlas Segmentation (MAS) and more particularly the patch-based approaches. As the standard way of extracting patches does not seem capable of exploiting the sulci geometry and the relations between them, which we believe to be the discriminative features for recognition, we propose a new patch generation strategy based on a high level representation of the sulci. We show that our new approach is slightly, but significantly, better than the reference one, while we still have an avenue of potential refinements that were beyond reach for a single template strategy.

Keywords

MRI Cortical sulci labeling Patch-based segmentation 

References

  1. 1.
    Behnke, K.J., et al.: Automatic classification of sulcal regions of the human brain cortex using pattern recognition. In: Medical Imaging 2003: Image Processing, vol. 5032, pp. 1499–1511. International Society for Optics and Photonics (2003)Google Scholar
  2. 2.
    Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics (1992)Google Scholar
  3. 3.
    Blida, A.: Ontology driven graph matching approach for automatic labeling brain cortical sulci. In: IT4OD, p. 162 (2014)Google Scholar
  4. 4.
    Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  5. 5.
    Fischl, B., et al.: Automatically parcellating the human cerebral cortex. Cerebral cortex 14(1), 11–22 (2004)CrossRefGoogle Scholar
  6. 6.
    Jaume, S., Macq, B., Warfield, S.K.: Labeling the brain surface using a deformable multiresolution mesh. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 451–458. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45786-0_56CrossRefGoogle Scholar
  7. 7.
    Lohmann, G., von Cramon, D.Y.: Automatic labelling of the human cortical surface using sulcal basins. Med. Image Anal. 4(3), 179–188 (2000)CrossRefGoogle Scholar
  8. 8.
    Mangin, J.F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5(4), 297–318 (1995)CrossRefGoogle Scholar
  9. 9.
    Perrot, M., Rivière, D., Mangin, J.F.: Cortical sulci recognition and spatial normalization. Med. Image Anal. 15(4), 529–550 (2011)CrossRefGoogle Scholar
  10. 10.
    Rivière, D., Mangin, J.F., Papadopoulos-Orfanos, D., Martinez, J.M., Frouin, V., Régis, J.: Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med. Image Anal. 6(2), 77–92 (2002)CrossRefGoogle Scholar
  11. 11.
    Royackkers, N., Desvignes, M., Revenu, M.: Une méthode générale de reconnaissance de courbres 3D: application à l’identification de sillons corticaux en imagerie par résonance magnétique. Traitement du Signal 15(5), 365–379 (1998)zbMATHGoogle Scholar
  12. 12.
    Sandor, S., Leahy, R.: Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans. Med. Imaging 16(1), 41–54 (1997)CrossRefGoogle Scholar
  13. 13.
    Shi, Y., et al.: Joint sulci detection using graphical models and boosted priors. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 98–109. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73273-0_9CrossRefGoogle Scholar
  14. 14.
    Vivodtzev, F., Linsen, L., Hamann, B., Joy, K.I., Olshausen, B.A.: Brain mapping using topology graphs obtained by surface segmentation. In: Scientific Visualization: The Visual Extraction of Knowledge from Data, pp. 35–48. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-30790-7Google Scholar
  15. 15.
    Yang, F., Kruggel, F.: A graph matching approach for labeling brain sulci using location, orientation, and shape. Neurocomputing 73(1–3), 179–190 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Léonie Borne
    • 1
  • Jean-François Mangin
    • 1
  • Denis Rivière
    • 1
  1. 1.Neurospin, CEA SaclayGif-sur-YvetteFrance

Personalised recommendations