Advertisement

LesionBrain: An Online Tool for White Matter Lesion Segmentation

  • Pierrick Coupé
  • Thomas Tourdias
  • Pierre Linck
  • José E. Romero
  • José V. Manjón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11075)

Abstract

In this paper, we present a new tool for white matter lesion segmentation called lesionBrain. Our method is based on a 3-stage strategy including multimodal patch-based segmentation, patch-based regularization of probability map and patch-based error correction using an ensemble of shallow neural networks. Its robustness and accuracy have been evaluated on the MSSEG challenge 2016 datasets. During our validation, the performance obtained by lesionBrain was competitive compared to recent deep learning methods. Moreover, lesionBrain proposes automatic lesion categorization according to location. Finally, complementary information on gray matter atrophy is included in the generated report. LesionBrain follows a software as a service model in full open access.

Keywords

White matter lesion segmentation Patch-based segmentation Service as a software 

Notes

Acknowledgement

This work benefited from the support of the project DeepVolBrain of the French National Research Agency (ANR). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX- 03- 02, HL-MRI Project), Cluster of excellence CPU and the CNRS. This study has been also supported by the DPI2017-87743-R grant from the Spanish Ministerio de Economia, Industria y Competitividad.

References

  1. 1.
    Garcia-Lorenzo, D., et al.: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med. Image Anal. 17(1), 1–18 (2013)CrossRefGoogle Scholar
  2. 2.
    Beaumont, J., Commowick, O., Barillot, C.: Multiple Sclerosis lesion segmentation using an automated multimodal Graph Cut (2016)Google Scholar
  3. 3.
    Schmidt, P., et al.: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59(4), 3774–3783 (2012)CrossRefGoogle Scholar
  4. 4.
    Vera-Olmos, F.J., Melero, H., Malpica, N.: Random forest for multiple sclerosis lesion segmentation. In: MSSEG Challenge Proceedings: Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure, p. 81 (2016)Google Scholar
  5. 5.
    Guizard, N., et al.: Rotation-invariant multi-contrast non-local means for MS lesion segmentation. Neuroimage Clin. 8, 376–389 (2015)CrossRefGoogle Scholar
  6. 6.
    Mechrez, R., Goldberger, J., Greenspan, H.: Patch-based segmentation with spatial consistency: application to MS lesions in brain MRI. J. Biomed. Imaging 2016, 1687–4188 (2016)Google Scholar
  7. 7.
    Hashemi, S.R., et al.: Tversky as a Loss Function for Highly Unbalanced Image Segmentation using 3D Fully Convolutional Deep Networks. arXiv preprint arXiv:1803.11078 (2018)
  8. 8.
    McKinley, R., et al.: Nabla-net: a deep dag-like convolutional architecture for biomedical image segmentation: application to white-matter lesion segmentation in multiple sclerosis. In: MSSEG Challenge Proceedings: Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure, p. 37 (2016)CrossRefGoogle Scholar
  9. 9.
    Valverde, S., et al.: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage 155, 159–168 (2017)CrossRefGoogle Scholar
  10. 10.
    Commowick, O., Cervenansky, F., Ameli, R.: MSSEG Challenge Proceedings: Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure (2016)Google Scholar
  11. 11.
    Thompson, A.J., et al.: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. In: The Lancet Neurology, pp. 1474–4422 (2017)Google Scholar
  12. 12.
    Coupe, P., et al.: Towards a unified analysis of brain maturation and aging across the entire lifespan: a MRI analysis. Hum. Brain Mapp. 38(11), 5501–5518 (2017)CrossRefGoogle Scholar
  13. 13.
    Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar
  14. 14.
    Eskildsen, S.F., et al.: BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59(3), 2362–2373 (2012)CrossRefGoogle Scholar
  15. 15.
    Manjon, J.V., et al.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)CrossRefGoogle Scholar
  16. 16.
    Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar
  17. 17.
    Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)CrossRefGoogle Scholar
  18. 18.
    Weiskopf, N., et al.: Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT). Neuroimage 54(3), 2116–2124 (2011)CrossRefGoogle Scholar
  19. 19.
    Manjón, J.V., Tohka, J., Robles, M.: Improved estimates of partial volume coefficients from noisy brain MRI using spatial context. Neuroimage 53(2), 480–490 (2010)CrossRefGoogle Scholar
  20. 20.
    Manjon, J.V., Coupe, P.: volBrain: an online MRI brain volumetry system. Front. Neuroinform. 10, 30 (2016)CrossRefGoogle Scholar
  21. 21.
    Manjon, J.V., et al.: Nonlocal intracranial cavity extraction. Int. J. Biomed. Imaging 2014, 820205 (2014)CrossRefGoogle Scholar
  22. 22.
    Romero, J.E., et al.: NABS: non-local automatic brain hemisphere segmentation. Magn. Reason. Imaging 33(4), 474–484 (2015)CrossRefGoogle Scholar
  23. 23.
    Coupé, P., et al.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  24. 24.
    Coupe, P., et al.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)CrossRefGoogle Scholar
  25. 25.
    Wang, H., et al.: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation. Neuroimage 55(3), 968–985 (2011)CrossRefGoogle Scholar
  26. 26.
    Romero, J.E., Coupé, P., Manjón, J.V.: HIPS: a new hippocampus subfield segmentation method. NeuroImage 163, 286–295 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Pierrick Coupé
    • 1
    • 2
  • Thomas Tourdias
    • 3
    • 4
    • 5
  • Pierre Linck
    • 4
    • 5
  • José E. Romero
    • 6
  • José V. Manjón
    • 6
  1. 1.CNRS, LaBRI, UMR 5800, PICTURATalenceFrance
  2. 2.Univ. Bordeaux, LaBRI, UMR 5800, PICTURATalenceFrance
  3. 3.Neurocentre Magendie, INSERM U1215BordeauxFrance
  4. 4.Univ. BordeauxBordeauxFrance
  5. 5.CHU de Bordeaux, Services de Neurologie et NeuroradiologieBordeauxFrance
  6. 6.Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA)Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations