Discerning a Progression in Conceptions of Magnitude During Children’s Construction of Number

  • Catherine Ulrich
  • Anderson NortonEmail author
Part of the Research in Mathematics Education book series (RME)


Psychological studies of early numerical development fill a void in mathematics education research. However, conflations between magnitude awareness and number, and over-attributions of researcher conceptions to children, have led to psychological models that are at odds with findings from mathematics educators on later numerical development. In this chapter, we use the approximate number system as an example of a psychological construct that would benefit the mathematics education community if reframed to account for distinctions between number and magnitude. We provide such a reframing that also accounts for the role of children’s sensorimotor activity in the construction of number.


Approximate number system Counting Early number Magnitude Students’ mathematics 


  1. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews. Neuroscience, 9(4), 278.CrossRefGoogle Scholar
  2. Baroody, A. J., Lai, M. L., & Mix, K. S. (2006). The development of young children’s early number and operation sense and its implications for early childhood education. Handbook of Research on the Education of Young Children, 2, 187–221.Google Scholar
  3. Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222.CrossRefGoogle Scholar
  4. Brouwer, L. E. J. (1998). The structure of the continuum. From Brouwer to Hilbert (pp. 54–63).Google Scholar
  5. Church, R. M. (1984). The numerical attribute of stimuli. In Animal cognition (pp. 445–464). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  6. Clements, D. H. (2000). Concrete manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45–60.CrossRefGoogle Scholar
  7. Cutini, S., Scatturin, P., Moro, S. B., & Zorzi, M. (2014). Are the neural correlates of subitizing and estimation dissociable? An fNIRS investigation. NeuroImage, 85, 391–399.CrossRefGoogle Scholar
  8. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.CrossRefGoogle Scholar
  9. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42.Google Scholar
  10. Dehaene, S. (1997). The number sense. New York: Oxford University Press.Google Scholar
  11. Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.CrossRefGoogle Scholar
  12. Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390–407. Scholar
  13. Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218–224.CrossRefGoogle Scholar
  14. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970–974.CrossRefGoogle Scholar
  15. Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H. C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18(1), 177–183.CrossRefGoogle Scholar
  16. Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Science, 4, 59–65.CrossRefGoogle Scholar
  17. Gibbon, J. (1977). Scalar expectancy theory and Weber's law in animal timing. Psychological Review, 84(3), 279.CrossRefGoogle Scholar
  18. Gravemeijer, K. P., Lehrer, R., van Oers, H. J., & Verschaffel, L. (Eds.). (2013). Symbolizing, modeling and tool use in mathematics education (Vol. 30). Dordrecht: Springer Science & Business Media.Google Scholar
  19. Hackenberg, A. J. (2005). A model of mathematical learning and caring relations. For the Learning of Mathematics, 25(1), 45–51.Google Scholar
  20. Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. Conceptual and procedural knowledge: The case of mathematics (Vol. 2, pp. 1–27).Google Scholar
  21. Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360(6393), 1124–1126.CrossRefGoogle Scholar
  22. Inglis, M., & Gilmore, C. (2013). Sampling from the mental number line: How are approximate number system representations formed? Cognition, 129(1), 63–69.CrossRefGoogle Scholar
  23. Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145, 147–155.CrossRefGoogle Scholar
  24. Joyce, D. E. (1996). Euclid’s elements. Retrieved from
  25. Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 1723–1743.CrossRefGoogle Scholar
  26. Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300.CrossRefGoogle Scholar
  27. Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic estrangement: Evidence against a strong association between numerical symbols and the quantities they represent. Journal of Experimental Psychology: General, 141(4), 635.CrossRefGoogle Scholar
  28. Maturana, H. R. (1988). Reality: The search for objectivity or the quest for a compelling argument. The Irish Journal of Psychology, 9(1), 25–82.CrossRefGoogle Scholar
  29. McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 68(5201), 569–573.CrossRefGoogle Scholar
  30. McLellan, J. A., & Dewey, J. (1895). The psychology of number and its applications to methods of teaching arithmetic. New York: Appleton.Google Scholar
  31. Mechner, F. (1958). Probability relations within response sequences under ratio reinforcement. Journal of the Experimental Analysis of Behavior, 1(2), 109–121.CrossRefGoogle Scholar
  32. Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320–334.Google Scholar
  33. Noël, M. E. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology, 11, 413–430. Scholar
  34. Norton, A., Ulrich, C., Bell, M. A., & Cate, A. (2018). Mathematics at hand. The Mathematics Educator.Google Scholar
  35. Núñez, R. E. (2011). No innate number line in the human brain. Journal of Cross-Cultural Psychology, 42(4), 651–668.CrossRefGoogle Scholar
  36. Penner-Wilger, M., & Anderson, M. L. (2013). The relation between finger gnosis and mathematical ability: Why redeployment of neural circuits best explains the finding. Frontiers in Psychology, 4, 877. Scholar
  37. Piaget, J. (1970). Structuralism (C. Maschler, Trans.). New York: Basic Books.Google Scholar
  38. Piaget, J., Inhelder, B., & Szeminksa, A. (1960). The child’s conception of geometry (E. A. Lunzer, Trans.). New York: Norton. (Original work published 1948).Google Scholar
  39. Piaget, J., & Szeminska, A. (1952). The child’s conception of number. New York: Norton.Google Scholar
  40. Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547–555.CrossRefGoogle Scholar
  41. Rousselle, L., Palmers, E., & Noël, M. P. (2004). Magnitude comparison in preschoolers: What counts? Influence of perceptual variables. Journal of Experimental Child Psychology, 87(1), 57–84.CrossRefGoogle Scholar
  42. Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 1609–1624. Scholar
  43. Rushton, S. K., & Wann, J. P. (1999). Weighted combination of size and disparity: A computational model for timing a ball catch. Nature Neuroscience, 2(2), 186–190.CrossRefGoogle Scholar
  44. Sarama, J., & Clements, D. H. (2009). Building blocks and cognitive building blocks: Playing to know the world mathematically. American Journal of Play, 1(3), 313–337.Google Scholar
  45. Sarnecka, B. W., Goldman, M. C., & Slusser, E. B. (2015). How counting leads to children’s first representations of exact, large numbers. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 291–309). New York: Oxford University Press ISBN: 978-0199642342.Google Scholar
  46. Sato, M., Cattaneo, L., Rizzolatti, G., & Gallese, V. (2007). Numbers within our hands: Modulation of corticospinal excitability of hand muscles during numerical judgment. Journal of Cognitive Neuroscience, 19(4), 684–693. Scholar
  47. Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48, 630–633.CrossRefGoogle Scholar
  48. Simon, M. A., Placa, N., & Avitzur, A. (2016). Participatory and anticipatory stages of mathematical concept learning: Further empirical and theoretical development. Journal for Research in Mathematics Education, 47(1), 63–93.CrossRefGoogle Scholar
  49. Soltész, F., Szűcs, D., & Szűcs, L. (2010). Relationships between magnitude representation, counting and memory in 4-to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(1), 6–13.CrossRefGoogle Scholar
  50. Sophian, C. (2007). The origins of mathematical knowledge in childhood. London: Routledge.Google Scholar
  51. Soylu, F., Lester, F. K., & Newman, S. D. (2018). You can count on your fingers: The role of fingers in early mathematical development. Journal of Numerical Cognition, 4(1), 107–135. Scholar
  52. Steffe, L. P. (1991). Operations that generate quantity. Learning and Individual Differences, 3(1), 61–82.CrossRefGoogle Scholar
  53. Steffe, L. P. (2010). Operations that produce numerical counting schemes. In L. P. Steffe & J. Olive (Eds.), Children’s fractional knowledge (pp. 27–47). New York: Springer. Scholar
  54. Steffe, L. P., Glasersfeld, E., von Richards, J., & Cobb, P. (1983). Children’s counting types: Philosophy, theory, and application. In J. Richards (Ed.), The creation of units as a prerequisite for number: A philosophical review. New York: Praeger.Google Scholar
  55. Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. New York: Springer. Scholar
  56. Steffe, L. P., & Tzur, R. (1994). Interaction and children’s mathematics. Journal of Research in Childhood Education, 8(2), 99–116.CrossRefGoogle Scholar
  57. Tall, D. (2004). Building theories: The three worlds of mathematics. For the Learning of Mathematics, 24(1), 29–32.Google Scholar
  58. Thompson, P. W., Carlson, M. P., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with magnitudes: A hypothesis about foundational reasoning abilities in algebra. In K. C. Moore, L. P. Steffe, & L. L. Hatfield (Eds.), Epistemic algebra students: Emerging models of students’ algebraic knowing (WISDOMe monographs) (Vol. 4, pp. 1–24). Laramie, WY: University of Wyoming.Google Scholar
  59. Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L., … Jin, X. (2013). Distinguishing schemes and tasks in children’s development of multiplicative reasoning. PNA, 7(3), 85–101.Google Scholar
  60. Ulrich, C. (2015). Stages in constructing and coordinating units additively and multiplicatively (part 1). For the Learning of Mathematics, 35(3), 2–7.Google Scholar
  61. Ulrich, C. (2016). Stages in constructing and coordinating units additively and multiplicatively (part 2). For the Learning of Mathematics, 36(1), 34–39.Google Scholar
  62. Ulrich, C., Tillema, E. S., Hackenberg, A. J., & Norton, A. (2014). Constructivist model building: Empirical examples from mathematics education. Constructivist Foundations, 9(3), 328–339.Google Scholar
  63. von Glasersfeld, E. (1981). An attentional model for the conceptual construction of units and number. Journal for Research in Mathematics Education, 12(2), 83–94.CrossRefGoogle Scholar
  64. von Glasersfeld, E. (1995). Radical Constructivism: A Way of Knowing and Learning. Studies in Mathematics Education Series: 6. Falmer Press, Taylor & Francis Inc., Bristol, PA.Google Scholar
  65. Wood, G., & Fischer, M. H. (2008). Numbers, space, and action–from finger counting to the mental number line and beyond. Cortex, 44(4), 353–358.CrossRefGoogle Scholar
  66. Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358(6389), 749–750. Scholar
  67. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of EducationVirginia TechBlacksburgUSA
  2. 2.Department of MathematicsVirginia TechBlacksburgUSA

Personalised recommendations