Advertisement

What’s Perception Got To Do with It? Re-framing Foundations for Rational Number Concepts

  • Percival G. MatthewsEmail author
  • Ryan Ziols
Chapter
Part of the Research in Mathematics Education book series (RME)

Abstract

Rational number knowledge is critical for mathematical literacy and academic success. However, despite considerable research efforts, rational numbers present perennial difficulties for a large number of learners. These difficulties have led some to posit that rational numbers are not a natural fit for human cognition. In this chapter, we challenge this assumption, describing recent research into intuitive routes to understanding rational number concepts that diverge from those popular in current curricular recommendations. Namely, we develop the claim that humans are perceptually sensitive to nonsymbolic ratio magnitudes, and that this sensitivity is an early developing, robust and abstract aspect of cognition. We suggest that attending to this perceptually based sensitivity can inform existing theory and help provide a basis for the design of more effective instruction on rational number concepts.

Keywords

Rational numbers Perceptual learning Numerical cognition Perception Fractions 

Notes

Acknowledgement

Support for this research was provided in part by National Institutes of Health, project 1R03HD081087-01. The authors thank Brandon Singleton and Nicole Fonger for helpful commentary on an earlier draft of this manuscript.

References

  1. Abrahamson, D. (2012). Rethinking intensive quantities via guided mediated abduction. Journal of the Learning Sciences, 21(4), 626–649.  https://doi.org/10.1080/10508406.2011.633838CrossRefGoogle Scholar
  2. Abrahamson, D. (2014). Building educational activities for understanding: an elaboration on the embodied-design framework and its epistemic grounds. International Journal of Child-Computer Interaction, 2(1), 1–16.CrossRefGoogle Scholar
  3. Abrahamson, D., & Sánchez-García, R. (2016). Learning is moving in new ways: The ecological dynamics of mathematics education. Journal of the Learning Sciences, 25(2), 203–239.CrossRefGoogle Scholar
  4. Abrahamson, D., Shayan, S., Bakker, A., & Van Der Schaaf, M. (2015). Eye-tracking Piaget: Capturing the emergence of attentional anchors in the coordination of proportional motor action. Human Development, 58(4–5), 218–244.CrossRefGoogle Scholar
  5. Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447–455.  https://doi.org/10.1016/j.jecp.2012.06.004CrossRefGoogle Scholar
  6. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617–645.  https://doi.org/10.1146/annurev.psych.59.103006.093639CrossRefGoogle Scholar
  7. Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational-number concepts. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91–126). New York: Academic Press.Google Scholar
  8. Bell, E. T. (1986). Men of mathematics. New York: Simon and Schuster.Google Scholar
  9. Bonn, C. D., & Cantlon, J. F. (2017). Spontaneous, modality-general abstraction of a ratio scale. Cognition, 169, 36–45.CrossRefGoogle Scholar
  10. Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3 = 2/6 = 3/9 = 4/12? Journal of Experimental Child Psychology, 111(3), 516–533.  https://doi.org/10.1016/j.jecp.2011.11.001CrossRefGoogle Scholar
  11. Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478–1490.  https://doi.org/10.1037/a0013110CrossRefGoogle Scholar
  12. Carraher, D. W. (1993). Lines of thought: A ratio and operator model of rational number. Educational Studies in Mathematics, 25(4), 281–305.CrossRefGoogle Scholar
  13. Carraher, D. W. (1996). Learning about fractions. In L. P. Steffe, P. Nesher, G. A. Goldin, P. Cobb, & B. Greer (Eds.), Theories of mathematical learning (pp. 241–266). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  14. Chen, Q., & Verguts, T. (2017). Numerical proportion representation: A neurocomputational account. Frontiers in Human Neuroscience, 11, 412.CrossRefGoogle Scholar
  15. Clements, M. A., & Del Campo, G. (1990). How natural is fraction knowledge. In L. P. Steffe & T. Wood (Eds.), Transforming children’s mathematics education: International perspectives (pp. 181–188). Hillsade, NJ: Lawrence Erlbaum.Google Scholar
  16. Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach to multiplication and exponential functions. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 291–330). Albany, NY: State University of New York Press.Google Scholar
  17. Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 66–86.CrossRefGoogle Scholar
  18. Davydov, V. V., & Tsvetkovich, Z. H. (1991). On the objective origin of the concept of fractions. Focus on Learning Problems in Mathematics, 13(1), 13–64.Google Scholar
  19. de Freitas, E. (2016). Material encounters and media events: What kind of mathematics can a body do? Educational Studies in Mathematics, 91(2), 185–202.CrossRefGoogle Scholar
  20. Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398.  https://doi.org/10.1016/j.neuron.2007.10.004CrossRefGoogle Scholar
  21. Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.CrossRefGoogle Scholar
  22. Drucker, C. B., Rossa, M. A., & Brannon, E. M. (2016). Comparison of discrete ratios by rhesus macaques (Macaca mulatta). Animal Cognition, 19(1), 75–89.CrossRefGoogle Scholar
  23. Duffy, S., Huttenlocher, J., & Levine, S. (2005). It is all relative: How young children encode extent. Journal of Cognition and Development, 6(1), 51–63.  https://doi.org/10.1207/s15327647jcd0601_4CrossRefGoogle Scholar
  24. Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics. Journal of Children’s Mathematical Behavior, 1(2), 7–26.Google Scholar
  25. Ernest, P. (1998). Social constructivism as a philosophy of mathematics. Albany, NY: Suny Press.Google Scholar
  26. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72.CrossRefGoogle Scholar
  27. Fechner, G. T., Howes, D. H., & Boring, E. G. (1966). Elements of psychophysics. New York: Holt, Rinehart & Winston.Google Scholar
  28. Feigenson, L. (2007). The equality of quantity. Trends in Cognitive Sciences, 11(5), 185–187.CrossRefGoogle Scholar
  29. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.  https://doi.org/10.1016/j.tics.2004.05.002CrossRefGoogle Scholar
  30. Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74(2), 163–183.CrossRefGoogle Scholar
  31. Gauthier, I., Tarr, M., & Bub, D. (2009). Perceptual expertise: Bridging brain and behavior. Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Gelman, R., & Meck, E. (1983). Preschoolers’ counting: Principles before skill. Cognition, 13(3), 343–359.  https://doi.org/10.1016/0010-0277(83)90014-8CrossRefGoogle Scholar
  33. Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Prentice-Hall.Google Scholar
  34. Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
  35. Gibson, E. J. (2000). Perceptual learning in development: Some basic concepts. Ecological Psychology, 12(4), 295–302.CrossRefGoogle Scholar
  36. Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment? Psychological Review, 62(1), 32–41.  https://doi.org/10.1037/h0048826CrossRefGoogle Scholar
  37. Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49(1), 585–612.CrossRefGoogle Scholar
  38. Goldstone, R. L., & Barsalou, L. W. (1998). Reuniting perception and conception. Cognition, 65(2–3), 231–262.  https://doi.org/10.1016/S0010-0277(97)00047-4CrossRefGoogle Scholar
  39. Goldstone, R. L., Landy, D. H., & Son, J. Y. (2010). The education of perception. Topics in Cognitive Science, 2(2), 265–284.  https://doi.org/10.1111/j.1756-8765.2009.01055.xCrossRefGoogle Scholar
  40. Goswami, U. (1995). Transitive relational mappings in three- and four-year-olds: The analogy of Goldilocks and the three bears. Child Development, 66(3), 877–892.  https://doi.org/10.1111/j.1467-8624.1995.tb00911.xCrossRefGoogle Scholar
  41. Gould, S. J., & Vrba, E. S. (1982). Exaptation—a missing term in the science of form. Paleobiology, 8(01), 4–15.CrossRefGoogle Scholar
  42. Hackenberg, A. J. (2007). Units coordination and the construction of improper fractions: A revision of the splitting hypothesis. The Journal of Mathematical Behavior, 26(1), 27–47.CrossRefGoogle Scholar
  43. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457.CrossRefGoogle Scholar
  44. Harper, D. G. C. (1982). Competitive foraging in mallards: “Ideal free” ducks. Animal Behaviour, 30(2), 575–584.  https://doi.org/10.1016/S0003-3472(82)80071-7CrossRefGoogle Scholar
  45. Hollands, J. G., & Dyre, B. P. (2000). Bias in proportion judgments: The Cyclical Power Model. Psychological Review, 107(3), 500–524.CrossRefGoogle Scholar
  46. Howison, M., Trninic, D., Reinholz, D., & Abrahamson, D. (2011, May). The Mathematical Imagery Trainer: From embodied interaction to conceptual learning. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1989–1998). ACM.Google Scholar
  47. Jacob, S. N., Vallentin, D., & Nieder, A. (2012). Relating magnitudes: the brain’s code for proportions. Trends in Cognitive Sciences, 16(3), 157–166.  https://doi.org/10.1016/j.tics.2012.02.002CrossRefGoogle Scholar
  48. Jeong, Y., Levine, S. C., & Huttenlocher, J. (2007). The development of proportional reasoning: Effect of continuous versus discrete quantities. Journal of Cognition and Development, 8(2), 237–256.  https://doi.org/10.1080/15248370701202471CrossRefGoogle Scholar
  49. Kaput, J. J., & Maxwell-West, M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 235–287). Albany, NY: State University of New York Press.Google Scholar
  50. Kellman, P. J., & Garrigan, P. (2009). Perceptual learning and human expertise. Physics of Life Reviews, 6(2), 53–84.CrossRefGoogle Scholar
  51. Kellman, P. J., & Massey, C. M. (2013). Perceptual learning, cognition, and expertise. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 58, pp. 117–165). San Diego, CA: Academic Press, Elsevier Inc.Google Scholar
  52. Kellman, P. J., Massey, C. M., & Son, J. Y. (2010). Perceptual learning modules in mathematics: Enhancing students’ pattern recognition, structure extraction, and fluency. Topics in Cognitive Science, 2(2), 285–305.  https://doi.org/10.1111/j.1756-8765.2009.01053.xCrossRefGoogle Scholar
  53. Kieren, T. E. (1980). The rational number construct - its elements and mechanisms. In T. E. Kieren (Ed.), Recent research on number learning (pp. 125–150). Columbus, OH: ERIC/SMEAC.Google Scholar
  54. Landy, D., Allen, C., & Zednik, C. (2014). A perceptual account of symbolic reasoning. Frontiers in Psychology, 5, 275.  https://doi.org/10.3389/fpsyg.2014.00275CrossRefGoogle Scholar
  55. Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 720–733.  https://doi.org/10.1037/0278-7393.33.4.720CrossRefGoogle Scholar
  56. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100.CrossRefGoogle Scholar
  57. Lewis, M. R., Matthews, P. G., & Hubbard, E. M. (2016). The non-symbolic foundations of fraction understanding. In D. B. Berch, D. C. Geary, & K. Mann Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 141–164). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  58. Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy scale among highly educated samples. Medical Decision Making, 21(1), 37–44.CrossRefGoogle Scholar
  59. Matthews, P. G. (2015, March). Delimiting and leveraging children’s natural sense of proportion. Poster presented at the Biennial Meeting of the Society for Research in Child Development (SRCD), Philadelphia, PA.Google Scholar
  60. Matthews, P. G., & Chesney, D. L. (2015). Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology, 78, 28–56.CrossRefGoogle Scholar
  61. Matthews, P. G., & Ellis, A. B. (2018). Natural alternatives to natural number: The case of ratio. Journal of Numerical Cognition, 4(1), 19–58.CrossRefGoogle Scholar
  62. Matthews, P. G., & Lewis, M. R. (2017). Fractions we cannot ignore: The nonsymbolic ratio congruity effect. Cognitive Science, 41(6), 1656–1674.CrossRefGoogle Scholar
  63. Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191–202.  https://doi.org/10.1177/0956797615617799CrossRefGoogle Scholar
  64. Matthews, P. G., Meng, R., Toomarian, E. Y., & Hubbard, E. M. (2016). The Relational SNARC: Spatial representation of nonsymbolic ratios? In A. Papafragou, D. Grodner, D. Mirman, & J. C. Trueswell (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 2651–2656). Austin, TX: Cognitive Science Society.Google Scholar
  65. Mazzocco, M. M., & Devlin, K. T. (2008). Parts and ‘holes’: Gaps in rational number sense among children with vs. without mathematical learning disabilities. Developmental Science, 11(5), 681–691.CrossRefGoogle Scholar
  66. McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behaviour, 47(2), 379–387.  https://doi.org/10.1006/anbe.1994.1052CrossRefGoogle Scholar
  67. McCrink, K., Spelke, E. S., Dehaene, S., & Pica, P. (2013). Non-symbolic halving in an Amazonian indigene group. Developmental Science, 16(3), 451–462.  https://doi.org/10.1111/desc.12037CrossRefGoogle Scholar
  68. McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18(8), 740–745.  https://doi.org/10.1111/j.1467-9280.2007.01969.xCrossRefGoogle Scholar
  69. Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320–324.Google Scholar
  70. Meert, G., Grégoire, J., Seron, X., & Noël, M.-P. (2012). The mental representation of the magnitude of symbolic and nonsymbolic ratios in adults. The Quarterly Journal of Experimental Psychology, 65(4), 702–724.  https://doi.org/10.1080/17470218.2011.632485CrossRefGoogle Scholar
  71. Meert, G., Grégoire, J., Seron, X., & Noël, M.-P. (2013). The processing of symbolic and nonsymbolic ratios in school-age children. PLoS One, 8(11), e82002.  https://doi.org/10.1371/journal.pone.0082002CrossRefGoogle Scholar
  72. Mix, K. S., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35(1), 164–174.  https://doi.org/10.1037/0012-1649.35.1.164CrossRefGoogle Scholar
  73. National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: Authors.Google Scholar
  74. National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: US Department of Education.Google Scholar
  75. Newton, K. J. (2008). An extensive analysis of preservice elementary teachers’ knowledge of fractions. American Educational Research Journal, 45(4), 1080–1110.CrossRefGoogle Scholar
  76. Nieder, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience, 6(3), 177–190.CrossRefGoogle Scholar
  77. Norton, A., & Hackenberg, A. J. (2010). Continuing research on students’ fraction schemes. In Children’s fractional knowledge (pp. 341–352). New York: Springer.CrossRefGoogle Scholar
  78. Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49(6), 1103–1112.CrossRefGoogle Scholar
  79. Olive, J., & Lobato, J. (2008). The learning of rational number concepts using technology. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Research syntheses (Vol. 1, pp. 1–53). Charlotte, NC: Information Age Publishing.Google Scholar
  80. Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551.CrossRefGoogle Scholar
  81. Post, T. R., Harel, G., Behr, M., & Lesh, R. (1991). Intermediate teachers’ knowledge of rational number concepts. In E. Fennema, T. Carpenter, & S. Lamon (Eds.), Integrating research on teaching and learning mathematics (pp. 177–198). New York: State University of New York Press.Google Scholar
  82. Pothier, Y., & Sawada, D. (1983). Partitioning: The emergence of rational number ideas in young children. Journal for Research in Mathematics Education, 14(5), 307–317.CrossRefGoogle Scholar
  83. Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception, 22(4), 463–475.CrossRefGoogle Scholar
  84. Rau, M. A., & Matthews, P. G. (2017). How to make ‘more’ better? Principles for effective use of multiple representations to enhance students’ learning about fractions. ZDM Mathematics Education, 49, 531–544.  https://doi.org/10.1007/s11858-017-0846-8CrossRefGoogle Scholar
  85. Resnick, L. B., & Singer, J. A. (1993). Protoquantitative origins of ratio reasoning. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 107–130). Hillsdale, NJ: Erlbaum.Google Scholar
  86. Rugani, R., McCrink, K., de Hevia, M.-D., Vallortigara, G., & Regolin, L. (2016). Ratio abstraction over discrete magnitudes by newly hatched domestic chicks (Gallus gallus). Scientific Reports, 6.  https://doi.org/10.1038/srep30114
  87. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.CrossRefGoogle Scholar
  88. Schmittau, J. (2003). Cultural historical theory and mathematics education. In A. Kozulin, B. Gindis, S. Miller, & V. Ageyev (Eds.), Vygotsky’s educational theory in cultural context(pp. 225–245). New York: Cambridge University Press.Google Scholar
  89. Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint. The Journal of the Learning Sciences, 16(4), 565–613.CrossRefGoogle Scholar
  90. Sidney, P. G., Thompson, C. A., Matthews, P. G., & Hubbard, E. M. (2017). From continuous magnitudes to symbolic numbers: The centrality of ratio. Behavioral and Brain Sciences, 40, E190. https://doi.org/10.1017/S0140525X16002284Google Scholar
  91. Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273–296.CrossRefGoogle Scholar
  92. Singer, J. A., & Resnick, L. B. (1992). Representations of proportional relationships: Are children part-part or part-whole reasoners? Educational Studies in Mathematics, 23(3), 231–246.CrossRefGoogle Scholar
  93. Singer-Freeman, K. E., & Goswami, U. (2001). Does half a pizza equal half a box of chocolates? Proportional matching in an analogy task. Cognitive Development, 16(3), 811–829.  https://doi.org/10.1016/S0885-2014(01)00066-1CrossRefGoogle Scholar
  94. Sophian, C. (2000). Perceptions of proportionality in young children: Matching spatial ratios. Cognition, 75(2), 145–170.  https://doi.org/10.1016/S0010-0277(00)00062-7CrossRefGoogle Scholar
  95. Sophian, C., & Wood, A. (1997). Proportional reasoning in young children: The parts and the whole of it. Journal of Educational Psychology, 89(2), 309–317.  https://doi.org/10.1037/0022-0663.89.2.309CrossRefGoogle Scholar
  96. Spinillo, A. G., & Bryant, P. (1991). Children’s proportional judgments: The importance of “Half”. Child Development, 62(3), 427–440.  https://doi.org/10.1111/j.1467-8624.1991.tb01542.xCrossRefGoogle Scholar
  97. Spinillo, A. G., & Bryant, P. E. (1999). Proportional reasoning in young children: Part-part comparisons about continuous and discontinuous quantity. Mathematical Cognition, 5(2), 181–197.  https://doi.org/10.1080/135467999387298CrossRefGoogle Scholar
  98. Steffe, L. P. (2002). A new hypothesis concerning children’s fractional knowledge. The Journal of Mathematical Behavior, 102, 1–41.  https://doi.org/10.1016/S0732-3123(02)00075-5CrossRefGoogle Scholar
  99. Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. New York: Springer.CrossRefGoogle Scholar
  100. Stevens, S. S., & Galanter, E. H. (1957). Ratio scales and category scales for a dozen perceptual continua. Journal of Experimental Psychology, 54(6), 377–411.  https://doi.org/10.1037/h0043680CrossRefGoogle Scholar
  101. Stigler, J. W., Givvin, K. B., & Thompson, B. J. (2010). What community college developmental mathematics students understand about mathematics. MathAMATYC Educator, 1(3), 4–16.Google Scholar
  102. Stroup, W. M. (2002). Understanding qualitative calculus: A structural synthesis of learning research. International Journal of Computers for Mathematical Learning, 7(2), 167–215.CrossRefGoogle Scholar
  103. Thompson, P. W. (2002). Didactic objects and didactic models in radical constructivism. In K. P. Gravemeijer, R. Lehrer, H. J. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 197–220). Dordrecht: Springer.CrossRefGoogle Scholar
  104. Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5–13.CrossRefGoogle Scholar
  105. Von Glasersfeld, E. (1984). An introduction to radical constructivism. In P. Watzlawick (Ed.), The invented reality (p. 1740). New York: Norton.Google Scholar
  106. Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.CrossRefGoogle Scholar
  107. Wilkins, J. L., & Norton, A. (2011). The splitting loope. Journal for Research in Mathematics Education, 42(4), 386–416.CrossRefGoogle Scholar
  108. Wilson, M. L., Britton, N. F., & Franks, N. R. (2002). Chimpanzees and the mathematics of battle. Proceedings of the Royal Society of London B: Biological Sciences, 269(1496), 1107–1112.  https://doi.org/10.1098/rspb.2001.1926CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Educational PsychologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Curriculum and InstructionUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations