Advertisement

Symbolic Unfolding of Multi-adjoint Logic Programs

  • Ginés Moreno
  • Jaime Penabad
  • José Antonio Riaza
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 796)

Abstract

The unfolding transformation has been widely used in many declarative frameworks for improving the efficiency of programs after applying computational steps on their rules. In this paper we apply such operation to a symbolic extension of a powerful fuzzy logic language where program rules extend the classical notion of clause by adding concrete and “symbolic” fuzzy connectives and truth degrees on their bodies.

Keywords

Fuzzy logic programming Symbolic programs Unfolding 

References

  1. 1.
    Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril-Fuzzy and Evidential Reasoning in Artificial Intelligence. Wiley (1995)Google Scholar
  2. 2.
    Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs. J. ACM 24(1), 44–67 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ishizuka, M., Kanai, N.: Prolog-ELF incorporating fuzzy logic. In: Aravind, K.J. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, IJCAI’85, pp. 701–703. Morgan Kaufmann (1985)Google Scholar
  4. 4.
    Julián-Iranzo, P., Moreno, G., Penabad, J.: On fuzzy unfolding: a multi-adjoint approach. Fuzzy Sets Syst. 154, 16–33 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Julián-Iranzo, P., Moreno, G., Penabad, J.: Operational/Interpretive unfolding of multi-adjoint logic programs. J. Univ. Comput. Sci. 12(11), 1679–1699 (2006)Google Scholar
  6. 6.
    Julián-Iranzo, P., Moreno, G., Penabad, J.: Thresholded semantic framework for a fully integrated fuzzy logic language. J. Log. Algebra. Method Program. 93, 42–67 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A declarative semantics for a fuzzy logic language managing similarities and truth degrees. In: Proceedings of the 10th International Symposium on Rule Technologies Research, Tools, and Applications, RuleML 2016, Stony Brook, NY, USA, 6–9 July 2016. LNCS 9718, pp. 68–82. Springer (2016)CrossRefGoogle Scholar
  8. 8.
    Lassez, J.L., Maher, M.J., Marriott, K.: Unification revisited. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 587–625. Morgan Kaufmann, Los Altos, Ca. (1988)CrossRefGoogle Scholar
  9. 9.
    Lee, R.C.T.: Fuzzy logic and the resolution principle. J. ACM 19(1), 119–129 (1972)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, D., Liu, D.: A fuzzy Prolog Database System. Wiley (1990)Google Scholar
  11. 11.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Moreno, G., Penabad, J., Riaza, J.A.: On similarity-based unfolding. In: Proceedings of the 11th International Conference on Scalable Uncertainty Management, SUM’17, Granada, Spain, 4–6 Oct 2017. LNCS 10564, pp. 420–426. Springer (2017)Google Scholar
  13. 13.
    Moreno, G., Penabad, J., Riaza, J.A., Vidal, G.: Symbolic execution and thresholding for efficiently tuning fuzzy logic programs. In: Proceedings of the 26th International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR’16, Edinburgh, UK, 6–8 Sept 2016, Revised Selected Papers. LNCS 10184, pp. 131–147. Springer (2016)Google Scholar
  14. 14.
    Moreno, G., Penabad, J., Vidal, G.: Tuning fuzzy logic programs with symbolic execution (2016). CoRR, abs arXiv:1608.04688
  15. 15.
    Moreno, G., Riaza, J.A.: An online tool for tuning fuzzy logic programs. In: Proceedings of the International Joint Conference on Rules and Reasoning, RuleML+RR 2017, London, UK, 12–15 July 2017. LNCS 10364, pp. 184–198. Springer (2017)Google Scholar
  16. 16.
    Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall, Boca Ratón, Florida (2006)Google Scholar
  17. 17.
    Pettorossi, A., Proietti, M.: Rules and strategies for transforming functional and logic programs. ACM Comput. Surv. 28(2), 360–414 (1996)CrossRefGoogle Scholar
  18. 18.
    Tamaki, H., Sato, T.: Unfold/fold transformations of logic programs. In: Tärnlund, S. (ed.) Proceedings of Second Int’l Conference on Logic Programming, pp. 127–139 (1984)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ginés Moreno
    • 1
  • Jaime Penabad
    • 2
  • José Antonio Riaza
    • 1
  1. 1.Department of Computing SystemsUCLMAlbaceteSpain
  2. 2.Department of MathematicsUCLMAlbaceteSpain

Personalised recommendations