3DGraCT: A Grammar-Based Compressed Representation of 3D Trajectories

  • Nieves R. Brisaboa
  • Adrián Gómez-BrandónEmail author
  • Miguel A. Martínez-Prieto
  • José Ramón Paramá
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11147)


Much research has been published about trajectory management on the ground or at the sea, but compression or indexing of flight trajectories have usually been less explored. However, air traffic management is a challenge because airspace is becoming more and more congested, and large flight data collections must be preserved and exploited for varied purposes. This paper proposes 3DGraCT, a new method for representing these flight trajectories. It extends the GraCT compact data structure to cope with a third dimension (altitude), while retaining its space/time complexities. 3DGraCT improves space requirements of traditional spatio-temporal data structures by two orders of magnitude, being competitive for the considered types of queries, even leading the comparison for a particular one.


  1. 1.
    de Bernardo, G., Álvarez-García, S., Brisaboa, N.R., Navarro, G., Pedreira, O.: Compact querieable representations of raster data. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Cham (2013). Scholar
  2. 2.
    Botea, V., Mallett, D., Nascimento, M.A., Sander, J.: PIST: an efficient and practical indexing technique for historical spatio-temporal point data. GeoInformatica 12(2), 143–168 (2008)CrossRefGoogle Scholar
  3. 3.
    Brisaboa, N., Ladra, S., Navarro, G.: DACs: bringing direct access to variable-length codes. Inf. Process. Manag. 49(1), 392–404 (2013)CrossRefGoogle Scholar
  4. 4.
    Brisaboa, N.R., Gómez-Brandón, A., Navarro, G., Paramá, J.R.: GraCT: a grammar based compressed representation of trajectories. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 218–230. Springer, Cham (2016). Scholar
  5. 5.
    Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with extended functionality. Inf. Syst. 39(1), 152–174 (2014)CrossRefGoogle Scholar
  6. 6.
    Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: an adaptive storage system for very large trajectory data sets. In: Proceedings of the IEEE 26th International Conference on Data Engineering (ICDE 2010), pp. 109–120 (2010)Google Scholar
  7. 7.
    Deng, K., Xie, K., Zheng, K., Zhou, X.: Trajectory indexing and retrieval. In: Zheng, Y., Zhou, X. (eds.) Computing with Spatial Trajectories, pp. 35–60. Springer, New York (2011). Scholar
  8. 8.
    Douglas, D.H., Peuker, T.K.: Algorithms for the reduction of the number of points required to represent a line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)CrossRefGoogle Scholar
  9. 9.
    Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). Scholar
  10. 10.
    Jacobson, G.: Space-efficient static trees and graphs. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 549–554 (1989)Google Scholar
  11. 11.
    Knuth, D.E.: Efficient representation of perm groups. Combinatorica 11, 33–43 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88(11), 1722–1732 (2000)CrossRefGoogle Scholar
  13. 13.
    Nascimento, M.A., Silva, J.R.O.: Towards historical R-trees. In: Proceedings of the 1998 ACM Symposium on Applied Computing. SAC 1998, pp. 235–240. ACM (1998)Google Scholar
  14. 14.
    Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  15. 15.
    Nibali, A., He, Z.: Trajic: an effective compression system for trajectory data. IEEE Trans. Knowl. Data Eng. 27(11), 3138–3151 (2015)CrossRefGoogle Scholar
  16. 16.
    Schäfer, M., Strohmeier, M., Lenders, V., Martinovic, I., Wilhelm, M.: Bringing up OpenSky: a large-scale ADS-B sensor network for research. In: Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. IPSN 2014, pp. 83–94. IEEE Press, Piscataway (2014).
  17. 17.
    Tao, Y., Papadias, D.: MV3R-tree: a spatio-temporal access method for timestamp and interval queries. In: 2001 Proceedings of the 27th International Conference on Very Large Data Bases, VLDB, pp. 431–440 (2001)Google Scholar
  18. 18.
    Trajcevski, G., Cao, H., Scheuermann, P., Wolfson, O., Vaccaro, D.: On-line data reduction and the quality of history in moving objects databases. In: Proceedings of the Fifth ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp. 19–26 (2006)Google Scholar
  19. 19.
    Vazirgiannis, M., Theodoridis, Y., Sellis, T.K.: Spatio-temporal composition and indexing for large multimedia applications. ACM Multimed. Syst. J. 6(4), 284–298 (1998)CrossRefGoogle Scholar
  20. 20.
    Wandelt, S., Sun, X.: Efficient compression of 4D-trajectory data in air traffic management. IEEE Trans. Intell. Transp. Syst. 16(2), 844–853 (2015)Google Scholar
  21. 21.
    Wandelt, S., Sun, X., Fricke, H.: ADS-BI: compressed indexing of ADS-B data. IEEE Trans. Intell. Transp. Syst. 99, 1–12 (2018)CrossRefGoogle Scholar
  22. 22.
    Wandelt, S., Sun, X., Gollnick, V.: SO6C: compressed trajectories in air traffic management. Air Traffic Control Q. 22(2), 157–178 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nieves R. Brisaboa
    • 1
  • Adrián Gómez-Brandón
    • 1
    Email author
  • Miguel A. Martínez-Prieto
    • 2
  • José Ramón Paramá
    • 1
  1. 1.CITICUniversidade da CoruñaA CoruñaSpain
  2. 2.Universidad de ValladolidValladolidSpain

Personalised recommendations