Advertisement

Faster and Smaller Two-Level Index for Network-Based Trajectories

  • Rodrigo Rivera
  • M. Andrea Rodríguez
  • Diego SecoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11147)

Abstract

Two-level indexes have been widely used to handle trajectories of moving objects that are constrained to a network. The top-level of these indexes handles the spatial dimension, whereas the bottom level handles the temporal dimension. The latter turns out to be an instance of the interval-intersection problem, but it has been tackled by non-specialized spatial indexes. In this work, we propose the use of a compact data structure on the bottom level of these indexes. Our experimental evaluation shows that our approach is both faster and smaller than existing solutions.

Keywords

Space-efficient data structures Moving-objects Indexing 

References

  1. 1.
    de Almeida, V.T., Güting, R.H.: Indexing the trajectories of moving objects in networks*. GeoInformatica 9(1), 33–60 (2005)CrossRefGoogle Scholar
  2. 2.
    Barkan, Y.: RTree, GitHub repository (2011). https://github.com/nushoin/RTree
  3. 3.
    Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19929-0_3CrossRefGoogle Scholar
  4. 4.
    Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Flexible indexing of repetitive collections. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 162–174. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58741-7_17CrossRefGoogle Scholar
  5. 5.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Heidelberg (2008).  https://doi.org/10.1007/978-3-662-03427-9CrossRefzbMATHGoogle Scholar
  6. 6.
    Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)CrossRefGoogle Scholar
  7. 7.
    Brisaboa, N.R., Fariña, A., Galaktionov, D., Rodríguez, M.A.: Compact trip representation over networks. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 240–253. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46049-9_23CrossRefGoogle Scholar
  8. 8.
    Brisaboa, N.R., Gagie, T., Gómez-Brandón, A., Navarro, G., Paramá, J.R.: Efficient compression and indexing of trajectories. In: Fici, G., Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 103–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67428-5_10CrossRefGoogle Scholar
  9. 9.
    Brisaboa, N.R., Gómez-Brandón, A., Navarro, G., Paramá, J.R.: GraCT: a grammar based compressed representation of trajectories. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 218–230. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46049-9_21CrossRefGoogle Scholar
  10. 10.
    Brisaboa, N.R., Ladra, S., Navarro, G.: k2-trees for compact web graph representation. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 18–30. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03784-9_3CrossRefGoogle Scholar
  11. 11.
    Brisaboa, N.R., Luaces, M.R., Navarro, G., Seco, D.: Space-efficient representations of rectangle datasets supporting orthogonal range querying. Inf. Syst. 38(5), 635–655 (2013)CrossRefGoogle Scholar
  12. 12.
    Ding, Z., Yang, B., Güting, R.H., Li, Y.: Network-matched trajectory-based moving-object database: models and applications. IEEE Trans. Intell. Transp. Syst. 16(4), 1918–1928 (2015)CrossRefGoogle Scholar
  13. 13.
    Fredman, M.L.: On computing the length of longest increasing subsequences. Discret. Math. 11(1), 29–35 (1975)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Frentzos, E.: Indexing objects moving on fixed networks. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 289–305. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45072-6_17CrossRefGoogle Scholar
  15. 15.
    Garrison, E.: Intervaltree, GitHub repository (2011). https://github.com/ekg/intervaltree
  16. 16.
    Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07959-2_28CrossRefGoogle Scholar
  17. 17.
    Guttman, A.: R-Trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14(2), 47–57 (1984)CrossRefGoogle Scholar
  18. 18.
    Han, Y., Sun, W., Zheng, B.: Compress: a comprehensive framework of trajectory compression in road networks. ACM Trans. Database Syst. 42(2), 11:1–11:49 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kellaris, G., Pelekis, N., Theodoridis, Y.: Map-matched trajectory compression. J. Syst. Softw. 86(6), 1566–1579 (2013)CrossRefGoogle Scholar
  20. 20.
    Koide, S., Tadokoro, Y., Xiao, C., Ishikawa, Y.: CiNCT: compression and retrieval for massive vehicular trajectories via relative movement labeling. In: ICDE, pp. 1097–1108 (2018)Google Scholar
  21. 21.
    Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor. Comput. Sci. 483, 115–133 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Krogh, B., Pelekis, N., Theodoridis, Y., Torp, K.: Path-based queries on trajectory data. In: SIGSPATIAL, pp. 341–350 (2014)Google Scholar
  23. 23.
    Meratnia, N., de By, R.A.: Spatiotemporal Compression Techniques for Moving Point Objects. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 765–782. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24741-8_44CrossRefGoogle Scholar
  24. 24.
    Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39(1), Article No. 2 (2007). https://dl.acm.org/citation.cfm?id=1216372CrossRefGoogle Scholar
  25. 25.
    Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In: ALENEX, pp. 60–70 (2007). http://dl.acm.org/citation.cfm?id=2791188.2791194CrossRefGoogle Scholar
  26. 26.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: VLDB, pp. 395–406 (2000)Google Scholar
  27. 27.
    Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spatiotemporal criteria. In: SSDBM, pp. 275–284 (2006)Google Scholar
  28. 28.
    Sandu Popa, I., Zeitouni, K., Oria, V., Barth, D., Vial, S.: Indexing in-network trajectory flows. VLDB J. 20(5), 643 (2011)CrossRefGoogle Scholar
  29. 29.
    Schmid, F., Richter, K.-F., Laube, P.: Semantic trajectory compression. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 411–416. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02982-0_30CrossRefGoogle Scholar
  30. 30.
    Schmidt, J.M.: Interval stabbing problems in small integer ranges. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 163–172. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10631-6_18CrossRefGoogle Scholar
  31. 31.
    Schmidt, J.M.: Publications by J.M. Schmidt. http://www4.tu-ilmenau.de/combinatorial-optimization/ShowPub.html (2018). Accessed 1 May 2018
  32. 32.
    Tao, Y., Papadias, D.: MV3R-Tree: a spatio-temporal access method for timestamp and interval queries. In: VLDB, pp. 431–440 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rodrigo Rivera
    • 1
  • M. Andrea Rodríguez
    • 1
    • 2
  • Diego Seco
    • 1
    • 2
    Email author
  1. 1.Departamento de Ingeniería Informática y Ciencias de la ComputaciónUniversidad de ConcepciónConcepciónChile
  2. 2.IMFDSantiagoChile

Personalised recommendations