Advertisement

Towards a Compact Representation of Temporal Rasters

  • Ana Cerdeira-Pena
  • Guillermo de Bernardo
  • Antonio Fariña
  • José Ramón ParamáEmail author
  • Fernando Silva-Coira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11147)

Abstract

Big research efforts have been devoted to efficiently manage spatio-temporal data. However, most works focused on vectorial data, and much less, on raster data. This work presents a new representation for raster data that evolve along time named Temporal \(\mathsf {k^2raster} \). It faces the two main issues that arise when dealing with spatio-temporal data: the space consumption and the query response times. It extends a compact data structure for raster data in order to manage time and thus, it is possible to query it directly in compressed form, instead of the classical approach that requires a complete decompression before any manipulation. In addition, in the same compressed space, the new data structure includes two indexes: a spatial index and an index on the values of the cells, thus becoming a self-index for raster data.

References

  1. 1.
    Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2017)CrossRefGoogle Scholar
  2. 2.
    de Bernardo, G., Álvarez-García, S., Brisaboa, N.R., Navarro, G., Pedreira, O.: Compact querieable representations of raster data. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02432-5_14CrossRefGoogle Scholar
  3. 3.
    Botea, V., Mallett, D., Nascimento, M.A., Sander, J.: PIST: an efficient and practical indexing technique for historical spatio-temporal point data. GeoInformatica 12(2), 143–168 (2008)CrossRefGoogle Scholar
  4. 4.
    Brisaboa, N.R., Ladra, S., Navarro, G.: DACs: bringing direct access to variable-length codes. Inf. Process. Manag. 49(1), 392–404 (2013)CrossRefGoogle Scholar
  5. 5.
    Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with extended functionality. Inf. Syst. 39(1), 152–174 (2014)CrossRefGoogle Scholar
  6. 6.
    Couclelis, H.: People manipulate objects (but cultivate fields): beyond the raster-vector debate in GIS. In: Frank, A.U., Campari, I., Formentini, U. (eds.) GIS 1992. LNCS, vol. 639, pp. 65–77. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-55966-3_3CrossRefGoogle Scholar
  7. 7.
    Jacobson, G.: Succinct static data structures. Ph.D. thesis, Carnegie-Mellon (1988)Google Scholar
  8. 8.
    Ladra, S., Paramá, J.R., Silva-Coira, F.: Scalable and queryable compressed storage structure for raster data. Inf. Syst. 72, 179–204 (2017)CrossRefGoogle Scholar
  9. 9.
    Mennis, J., Viger, R., Tomlin, C.D.: Cubic map algebra functions for spatio-temporal analysis. Cartogr. Geogr. Inf. Sci. 32(1), 17–32 (2005)CrossRefGoogle Scholar
  10. 10.
    Nascimento, M.A., Silva, J.R.O.: Towards historical R-trees. In: Proceedings of the 1998 ACM Symposium on Applied Computing. SAC 1998, pp. 235–240. ACM, New York (1998)Google Scholar
  11. 11.
    Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  12. 12.
    Pinto, A., Seco, D., Gutiérrez, G.: Improved queryable representations of rasters. In: Proceedings of the 2017 Data Compression Conference (DCC), pp. 320–329 (2017)Google Scholar
  13. 13.
    Tao, Y., Papadias, D.: MV3R-tree: a spatio-temporal access method for timestamp and interval queries. In: Proceedings of the 27th International Conference on Very Large Data Bases (VLDB), pp. 431–440 (2001)Google Scholar
  14. 14.
    Vazirgiannis, M., Theodoridis, Y., Sellis, T.K.: Spatio-temporal composition and indexing for large multimedia applications. ACM Multimed. Syst. J. 6(4), 284–298 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ana Cerdeira-Pena
    • 1
  • Guillermo de Bernardo
    • 1
    • 2
  • Antonio Fariña
    • 1
  • José Ramón Paramá
    • 1
    Email author
  • Fernando Silva-Coira
    • 1
  1. 1.Fac. Informática, CITICUniversidade da CoruñaA CoruñaSpain
  2. 2.Enxenio S.L.A CoruñaSpain

Personalised recommendations