Advertisement

Constrained Job Rearrangements on a Single Machine

  • Arianna Alfieri
  • Gaia Nicosia
  • Andrea Pacifici
  • Ulrich Pferschy
Chapter
Part of the AIRO Springer Series book series (AIROSS, volume 1)

Abstract

In several scheduling applications, one may be required to revise a pre-determined plan in order to meet a certain objective. This may happen if changes in the scenario predicted beforehand occur (e.g., due to disruptions, breakdowns, data values different from the expected ones). In this case costly reorganization of the current solution impose a limit on the allowed number of modifications. In our work, we address a single-machine scheduling problem where we need to alter a given (original) solution, by re-sequencing jobs with constraints on the number and type of allowed job shifts. For different objectives and rearrangement types, we propose mathematical programming models and possible solution approaches.

Keywords

Scheduling Integer linear programming Re-sequencing Dynamic programming 

References

  1. 1.
    Agnetis, A., Hall, N.G., Pacciarelli, D.: Supply chain scheduling: sequence coordination. Discret. Appl. Math. 154(15), 2044–2063 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Detti, P., Nicosia, G., Pacifici, A., Zabalo Manrique de Lara, G.: Robust single machine scheduling with external-party jobs. IFAC-PapersOnLine 49(12), 1731–1736 (2016)CrossRefGoogle Scholar
  3. 3.
    Hall, N.G., Potts, C.N.: Rescheduling for job unavailability. Oper. Res. 58(3), 746–755 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kumar, R., Vassilvitskii, S.: Generalized distances between rankings. In: Proceedings of the 19th International Conference on World Wide Web, pp. 571–580. ACM (2010)Google Scholar
  5. 5.
    Moore, J.M.: An n job, one machine sequencing algorithm for minimizing the number of late jobs. Manag. Sci. 15(1), 102–109 (1968)CrossRefGoogle Scholar
  6. 6.
    Wang, X., Disney, S.M.: The bullwhip effect: progress, trends and directions. Eur. J. Oper. Res. 250(3), 691–701 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Arianna Alfieri
    • 1
  • Gaia Nicosia
    • 2
  • Andrea Pacifici
    • 3
  • Ulrich Pferschy
    • 4
  1. 1.Dipartimento di Ingegneria Gestionale e della ProduzionePolitecnico di TorinoTurinItaly
  2. 2.Dipartimento di IngegneriaUniversità Roma TreRomeItaly
  3. 3.Dipartimento di Ingegneria Civile e Ingegneria InformaticaUniversità di Roma “Tor Vergata”RomeItaly
  4. 4.Department of Statistics and Operations ResearchUniversity of GrazGrazAustria

Personalised recommendations