Situation Awareness and Environmental Factors: The EVO Oil Production

  • Massimo de Falco
  • Nicola Mastrandrea
  • Wathiq Mansoor
  • Luigi Rarità
Part of the AIRO Springer Series book series (AIROSS, volume 1)


The paper considers simulation results for a supply network, that deals with Extra Virgin Olive (EVO) oil production, an activity that is typical of Southern Italy. The phenomenon is studied by differential equations, that focus on goods on arcs and queues for the exceeding goods. Different numerical schemes are used for simulations. A strategy of Situation Awareness allows defining a possible choice of the input flow to the supply network. The achieved results indicate that Situation Awareness permits to find good compromises for the modulation of production queues and the optimization of the overall system features.


Situation Awareness Production systems Simulations 


  1. 1.
    Daganzo, C.: A Theory of Supply Chains. Springer, New York, Berlin, Heidelberg (2003)Google Scholar
  2. 2.
    Helbing, D., Lämmer, S.: Supply and production networks: from the bullwhip effect to business cycles. In: Armbruster, D., Mikhailov, A.S., Kaneko, K. (eds.) Networks of Interacting Machines: Production Organization in Complex Industrial Systems and Biological Cells, pp. 33–66. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  3. 3.
    Cascone, A., D’Apice, C., Piccoli, B., Rarità, L.: Circulation of car traffic in congested urban areas. Commun. Math. Sci. 6(3), 765–784 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Manzo, R., Piccoli, B., Rarità, L.: Optimal distribution of traffic flows at junctions in emergency cases. Eur. J. Appl. Math. 23(4), 515–535 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Armbruster, D., Degond, P., Ringhofer, C.: A model for the dynamics of large queueing networks and supply chains. SIAM J. Appl. Math. 66, 896–920 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bressan, A.: Hyperbolic Systems of Conservation Laws—The One—Dimensional Cauchy Problem. Oxford University Press, Oxford (2000)Google Scholar
  7. 7.
    Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer (1999)Google Scholar
  8. 8.
    Armbruster, D., Degond, P., Ringhofer, C.: Kinetic and fluid models for supply chains supporting policy attributes. Bull. Inst. Math. Acad. Sin. (N.S.), 2, 433–460 (2007)Google Scholar
  9. 9.
    Göttlich, S., Herty, M., Klar, A.: Network models for supply chains. Commun. Math. Sci. 3, 545–559 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Göttlich, S., Herty, M., Klar, A.: Modelling and optimization of supply chains on complex networks. Commun. Math. Sci. 4, 315–330 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    de Falco, M., Gaeta, M., Loia, V., Rarità, L., Tomasiello, S.: Differential quadrature-based numerical solutions of a fluid dynamic model for supply chains. Commun. Math. Sci. 14(5), 1467–1476 (2016)Google Scholar
  12. 12.
    Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, 2002Google Scholar
  13. 13.
    Cutolo, A., Piccoli, B., Rarità, L.: An upwind-Euler scheme for an ODE-PDE model of supply chains. SIAM J. Sci. Comput. 33(4), 1669–1688 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tomasiello, S.: DQ based methods: theory and application to engineering. In: Leng, J., Sharrock, W. (eds.) Handbook of Research on Computational Science and Engineering: Theory and Practice. IGI Global, pp. 316–346 (2013)Google Scholar
  15. 15.
    Kamarian, S., Salim, M., Dimitri, R., Tornabene, F.: Free Vibration Analysis of Conical Shells Reinforced with Agglomerated Carbon Nanotubes. Int. J. Mech. Sci. 108–109(1), 157–165 (2016)CrossRefGoogle Scholar
  16. 16.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors J. Hum. Factors Erg. Soc. 37(1), 32–64 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Massimo de Falco
    • 1
  • Nicola Mastrandrea
    • 1
  • Wathiq Mansoor
    • 2
  • Luigi Rarità
    • 3
  1. 1.Dipartimento di Scienze Aziendali - Management & Innovation SystemsUniversity of SalernoFisciano (SA)Italy
  2. 2.University of DubaiAcademic CityUnited Arab Emirates
  3. 3.Dipartimento di Ingegneria Industriale, University of SalernoFisciano (SA)Italy

Personalised recommendations