Advertisement

An Argumentative Recommendation Approach Based on Contextual Aspects

  • Juan Carlos Lionel TezeEmail author
  • Lluis Godo
  • Guillermo Ricardo Simari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11142)

Abstract

Argumentation-based recommender systems constitute an interesting tool to provide reasoned recommendations in complex domains with unresolved contradictory information situations and incomplete information. In these systems, the use of contextual information becomes a central issue in order to come up with personalized recommendations. An argumentative recommender system that offers mechanisms to handle contextual aspects of the recommendation domain provides an important ability that can be exploited by the user. However, in most of existing works, this issue has not been extensively studied. In this work, we propose an argumentation-based formalization for dealing with this issue. We present a general framework that allows the design of recommender systems capable of handling queries that can include (possibly inconsistent) contextual information under which recommendations should be computed. To answer a query, in the proposed argumentation-based approach, the system first selects alternative instances according to the user’s supplied contextual information, and then makes recommendations, in both cases through a defeasible argumentative analysis.

Keywords

Recommenders Argumentation Contextual information 

Notes

Acknowledgements

This work has been partially supported by EU H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 690974 for the project MIREL: MIning and REasoning with Legal texts, and by funds provided by CONICET, Universidad Nacional del Sur by PGI-UNS (grant 24/N040), and Universidad Nacional de Entre Ríos. Godo acknowledges the Spanish FEDER/MINECO project TIN2015-71799- C2-1-P.

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston, MA (2015).  https://doi.org/10.1007/978-1-4899-7637-6_6CrossRefzbMATHGoogle Scholar
  2. 2.
    Afzal, M., et al.: Personalization of wellness recommendations using contextual interpretation. Expert Syst. Appl. 96, 506–521 (2018)CrossRefGoogle Scholar
  3. 3.
    Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A logic programming framework for possibilistic argumentation: formalization and logical properties. Fuzzy Sets Syst. 159(10), 1208–1228 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 238–247 (2014)Google Scholar
  5. 5.
    Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Knowl.-Based Syst. 22(4), 261–265 (2009)CrossRefGoogle Scholar
  6. 6.
    Briguez, C.E., Budán, M.C., Deagustini, C.A.D., Maguitman, A.G., Capobianco, M., Simari, G.R.: Argument-based mixed recommenders and their application to movie suggestion. Expert Syst. Appl. 41(14), 6467–6482 (2014)CrossRefGoogle Scholar
  7. 7.
    Briguez, C.E., Budán, M.C., Deagustini, C.A., Maguitman, A.G., Capobianco, M., Simari, G.R.: Towards an argument-based music recommender system. COMMA 245, 83–90 (2012)Google Scholar
  8. 8.
    Briguez, C.E., Capobianco, M., Maguitman, A.G.: A theoretical framework for trust-based news recommender systems and its implementation using defeasible argumentation. Int. J. Artif. Intell. Tools 22(4), 1350021 (2013)CrossRefGoogle Scholar
  9. 9.
    Carrer-Neto, W., Hernández-Alcaraz, M.L., Valencia-García, R., Sánchez, F.G.: Social knowledge-based recommender system. Application to the movies domain. Expert Syst. Appl. 39(12), 10990–11000 (2012)CrossRefGoogle Scholar
  10. 10.
    Castro-Schez, J.J., Miguel, R., Vallejo, D., López-López, L.M.: A highly adaptive recommender system based on fuzzy logic for B2C e-commerce portals. Expert Syst. Appl. 38(3), 2441–2454 (2011)CrossRefGoogle Scholar
  11. 11.
    García, A.J., Rotstein, N.D., Tucat, M., Simari, G.R.: An argumentative reasoning service for deliberative agents. In: Zhang, Z., Siekmann, J. (eds.) KSEM 2007. LNCS (LNAI), vol. 4798, pp. 128–139. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76719-0_16CrossRefGoogle Scholar
  12. 12.
    García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theory Pract. Log. Program. (TPLP) 4(1–2), 95–138 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Herlocker, J.L., Konstan, J.A.: Content-independent task-focused recommendation. IEEE Internet Comput. 5(6), 40–47 (2001)CrossRefGoogle Scholar
  14. 14.
    Iacobacci, I., Pilehvar, M.T., Navigli, R.: Embeddings for word sense disambiguation: an evaluation study. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 897–907 (2016)Google Scholar
  15. 15.
    Kågebäck, M., Johansson, F., Johansson, R., Dubhashi, D.: Neural context embeddings for automatic discovery of word senses. In: Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, pp. 25–32 (2015)Google Scholar
  16. 16.
    Lippi, M., Torroni, P.: MARGOT: a web server for argumentation mining. Expert Syst. Appl. 65, 292–303 (2016)CrossRefGoogle Scholar
  17. 17.
    Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston, MA (2011).  https://doi.org/10.1007/978-0-387-85820-3_1CrossRefzbMATHGoogle Scholar
  18. 18.
    Taghipour, K., Ng, H.T.: Semi-supervised word sense disambiguation using word embeddings in general and specific domains. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 314–323 (2015)Google Scholar
  19. 19.
    Teze, J.C., Gottifredi, S., García, A.J., Simari, G.R.: Improving argumentation-based recommender systems through context-adaptable selection criteria. Expert Syst. Appl. 42(21), 8243–8258 (2015)CrossRefGoogle Scholar
  20. 20.
    Tucat, M., García, A.J., Simari, G.R.: Using defeasible logic programming with contextual queries for developing recommender servers. In: AAAI Fall Symposium: The Uses of Computational Argumentation (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Juan Carlos Lionel Teze
    • 1
    • 2
    • 3
    Email author
  • Lluis Godo
    • 4
  • Guillermo Ricardo Simari
    • 1
  1. 1.Institute for Computer Science and Engineering (ICIC), Departamento de Ciencias e Ing. de la ComputaciónUniversidad Nacional del SurBahía Blanca, Buenos AiresArgentina
  2. 2.Agents and Intelligent Systems Area, Faculty of Management SciencesUniversidad Nacional de Entre RíosConcordiaArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Artificial Intelligence Research Institute (IIIA-CSIC)BarcelonaSpain

Personalised recommendations