Advertisement

A Credal Extension of Independent Choice Logic

  • Alessandro AntonucciEmail author
  • Alessandro Facchini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11142)

Abstract

We propose an extension of Poole’s independent choice logic based on a relaxation of the underlying independence assumptions. A credal semantics involving multiple joint probability mass functions over the possible worlds is adopted. This represents a conservative approach to probabilistic logic programming achieved by considering all the mass functions consistent with the probabilistic facts. This allows to model tasks for which independence among some probabilistic choices cannot be assumed, and a specific dependence model cannot be assessed. Preliminary tests on an object ranking application show that, despite the loose underlying assumptions, informative inferences can be extracted.

Keywords

Probabilistic logic programming Imprecise probabilities PSAT Independence 

References

  1. 1.
    Andersen, K.A., Hooker, J.N.: Bayesian logic. Decis. Support Syst. 11(2), 191–210 (1994)CrossRefGoogle Scholar
  2. 2.
    Apt, K.R., Bezem, M.: Acyclic programs. New Gener. Comput. 9(3), 335–363 (1991)CrossRefGoogle Scholar
  3. 3.
    Augustin, T., Coolen, F., de Cooman, G., Troffaes, M.: Introduction to Imprecise Probabilities. Wiley, Hoboken (2014)CrossRefGoogle Scholar
  4. 4.
    Carpenter, B., et al.: Stan: a probabilistic programming language. J. Stat. Softw. 20, 1–37 (2016)Google Scholar
  5. 5.
    Cozman, F., de Campos, C., da Rocha, J.C.: Probabilistic logic with independence. Int. J. Approx. Reason. 49(1), 3–17 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cozman, F., di Ianni, L.: Probabilistic satisfiability and coherence checking through integer programming. Int. J. Approx. Reason. 58, 57–70 (2015)CrossRefGoogle Scholar
  7. 7.
    Cozman, F., Mauá, D.: On the semantics and complexity of probabilistic logic programs. J. Artif. Intell. Res. 60, 221–262 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Raedt, L.: Applications of probabilistic logic programming. In: International Conference on Inductive Logic Programming (2015)Google Scholar
  9. 9.
    De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic Prolog and its application in link discovery. In: International Joint Conference on Artificial Intelligence, pp. 2462–2467 (2007)Google Scholar
  11. 11.
    Fierens, D., et al.: Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory Pract. Log. Program. 15(3), 358–401 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Finger, M., De Bona, G.: Probabilistic satisfiability: logic-based algorithms and phase transition. In: International Joint Conference on Artificial Intelligence, pp. 528–533 (2011)Google Scholar
  13. 13.
    Flesca, S., Furfaro, F., Parisi, F.: Consistency checking and querying in probabilistic databases under integrity constraints. J. Comput. Syst. Sci. 80(7), 1448–1489 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fuhr, N.: Probabilistic datalog: a logic for powerful retrieval methods. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 282–290. ACM (1995)Google Scholar
  15. 15.
    Fuhr, N.: Probabilistic datalog: implementing logical information retrieval for advanced applications. J. Assoc. Inf. Sci. Technol. 51(2), 95–110 (2000)MathSciNetGoogle Scholar
  16. 16.
    Fürnkranz, J., Hüllermeier, E.: Preference learning: an introduction. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 1–17. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14125-6_1CrossRefzbMATHGoogle Scholar
  17. 17.
    Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.: Probabilistic satisfiability. J. Complex. 4(1), 1–11 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Haenni, R., Romeijn, J.W., Wheeler, G., Williamson, J.: Probabilistic Logics and Probabilistic Networks, vol. 350. Springer, Dordrecht (2010).  https://doi.org/10.1007/978-94-007-0008-6CrossRefzbMATHGoogle Scholar
  19. 19.
    Janhunen, T.: Representing normal programs with clauses. In: European Conference on Artificial Intelligence, pp. 358–362. IOS Press (2004)Google Scholar
  20. 20.
    Levi, I.: The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and Chance. MIT press, Cambridge (1983)Google Scholar
  21. 21.
    Lukasiewicz, T.: Probabilistic logic programming. In: European Conference on Artificial Intelligence, pp. 388–392 (1998)Google Scholar
  22. 22.
    Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reason. 45(2), 288–307 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Michels, S., Hommersom, A., Lucas, P.J., Velikova, M.: A new probabilistic constraint logic programming language based on a generalised distribution semantics. Artif. Intell. 228, 1–44 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ng, R., Subrahmanian, V.S.: Probabilistic logic programming. Inf. Comput. 101(2), 150–201 (1992)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artif. Intell. 64(1), 81–129 (1993)CrossRefGoogle Scholar
  27. 27.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1), 7–56 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: International Conference on Logic Programming, pp. 715–729 (1995)Google Scholar
  29. 29.
    Vennekens, J., Verbaeten, S.: Logic programs with annotated disjunctions. Technical report CW 368, K.U.Leuven (2003)Google Scholar
  30. 30.
    Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27775-0_30CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Istituto Dalle Molle di Studi Sull’Intelligenza Artificiale (IDSIA)LuganoSwitzerland

Personalised recommendations