Measuring and Computing Database Inconsistency via Repairs

  • Leopoldo BertossiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11142)


We propose a generic numerical measure of inconsistency of a database with respect to a set of integrity constraints. It is based on an abstract repair semantics. A particular inconsistency measure associated to cardinality-repairs is investigated; and we show that it can be computed via answer-set programs.


Integrity constraints in databases Inconsistent databases Database repairs Inconsistency measures 


  1. 1.
    Bertossi, L.: Characterizing and computing causes for query answers in databases from database repairs and repair programs. Corr Arxiv cs.DB/1712.01001 (2018). Proc. FoIKs. LNCS, vol. 10833, pp. 55–76. Springer (2018)Google Scholar
  2. 2.
    Bertossi, L.: Database Repairing and Consistent Query Answering. Synthesis Lectures on Data Management. Morgan & Claypool, San Rafael (2011)Google Scholar
  3. 3.
    Bertossi, L., Salimi, B.: From causes for database queries to repairs and model-based diagnosis and back. Theory Comput. Syst. 61(1), 191–232 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bertossi, L., Rizzolo, F., Jiang, L.: Data quality is context dependent. In: Castellanos, M., Dayal, U., Markl, V. (eds.) BIRTE 2010. LNBIP, vol. 84, pp. 52–67. Springer, Heidelberg (2011). Scholar
  5. 5.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 93–103 (2011)CrossRefGoogle Scholar
  6. 6.
    Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple deletions. Inf. Comput. 197(1–2), 90–121 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caniupan-Marileo, M., Bertossi, L.: The consistency extractor system: answer set programs for consistent query answering in databases. Data Knowl. Eng. 69(6), 545–572 (2010)CrossRefGoogle Scholar
  8. 8.
    Eiter, T., Mannila, H.: Distance measures for point sets and their computation. Acta Inform. 34, 109–133 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grant, J., Martinez, M.V. (eds.): Measuring Inconsistency in Information. College Publications, Los Angeles (2018)zbMATHGoogle Scholar
  10. 10.
    Grant, J., Hunter, A.: Analysing inconsistent information using distance-based measures. Int. J. Approx. Reason. 89, 3–26 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from relations. Theor. Comput. Sci. 149, 129–l49 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Leone, N., et al.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The complexity of causality and responsibility for query answers and non-answers. Proc. VLDB 4, 34–41 (2010)CrossRefGoogle Scholar
  14. 14.
    Rajamaran, A., Ullman, J.: Mining of Masssive Datasets. Cambridge University Press, Cambridge (2012)Google Scholar
  15. 15.
    Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent query answering in relational databases. Ann. Math. Artif. Intell. 64(2–3), 209–246 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Thimm, M.: On the compliance of rationality postulates for inconsistency measures: a more or less complete picture. Künstliche Intell. 31(1), 31–39 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Carleton UniversityOttawaCanada
  2. 2.RelationalAI, Inc.BerkeleyUSA

Personalised recommendations