Consequence-Based Axiom Pinpointing

  • Ana Ozaki
  • Rafael PeñalozaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11142)


Axiom pinpointing refers to the problem of finding the axioms in an ontology that are relevant for understanding a given entailment or consequence. One approach for axiom pinpointing, known as glass-box, is to modify a classical decision procedure for the entailments into a method that computes the solutions for the pinpointing problem. Recently, consequence-based decision procedures have been proposed as a promising alternative for tableaux-based reasoners for standard ontology languages. In this work, we present a general framework to extend consequence-based algorithms with axiom pinpointing.


Consequence-based reasoning Non-standard reasoning Consequence management 


  1. 1.
    Arif, M.F., Mencía, C., Marques-Silva, J.: Efficient axiom pinpointing with EL2MCS. In: KI, pp. 225–233 (2015)Google Scholar
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{E\!L}\) envelope. In: IJCAI, pp. 364–369 (2005)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. Autom. Reason. 45(2), 91–129 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput. 20(1), 5–34 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\cal{EL}^+\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007). Scholar
  7. 7.
    Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\cal{EL}^+\). In: Proceedings of the 3rd Knowledge Representation in Medicine (KR-MED 2008): Representing and Sharing Knowledge Using SNOMED. CEUR-WS, vol. 410 (2008)Google Scholar
  8. 8.
    Bate, A., Motik, B., Grau, B.C., Simancik, F., Horrocks, I.: Extending consequence-based reasoning to SRIQ. In: KR, pp. 187–196 (2016)Google Scholar
  9. 9.
    Cucala, D.T., Grau, B.C., Horrocks, I.: Consequence-based reasoning for description logics with disjunction, inverse roles, and nominals. In: Proceedings of the 30th International Workshop on Description Logics, Montpellier, France, 18–21 July 2017 (2017)Google Scholar
  10. 10.
    Degtyarenko, K., et al.: ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36(suppl 1), D344–D350 (2008)Google Scholar
  11. 11.
    Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Beijing, China, 11–13 June 2007, pp. 31–40 (2007)Google Scholar
  12. 12.
    Hutschenreiter, L., Peñaloza, R.: An automata view to goal-directed methods. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 103–114. Springer, Cham (2017). Scholar
  13. 13.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007). Scholar
  14. 14.
    Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: Boutilier, C. (ed.) IJCAI 2009, pp. 2040–2045 (2009)Google Scholar
  15. 15.
    Kazakov, Y., Klinov, P.: Bridging the gap between tableau and consequence-based reasoning. In: Informal Proceedings of the 27th International Workshop on Description Logics, Vienna, Austria, 17–20 July 2014, pp. 579–590 (2014)Google Scholar
  16. 16.
    Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial procedures to efficient reasoning with \(\cal{E\!L}\) ontologies. JAR 53(1), 1–61 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kuipers, B.J.: An ontological hierarchy for spatial knowledge. In: Proceedings of the 10th International Workshop on Qualitative Reasoning About Physical Systems, Fallen Leaf Lake, California, USA (1996)Google Scholar
  18. 18.
    McMaster, R.B., Usery, E.L.: A Research Agenda for Geographic Information Science, vol. 3. CRC Press, Boca Raton (2004)Google Scholar
  19. 19.
    Minoux, M.: LTUR: a simplified linear-time unit resolution algorithm for Horn formulae and computer implementation. Inf. Process. Lett. 29(1), 1–12 (1988)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: WWW, pp. 633–640 (2005)Google Scholar
  21. 21.
    Peñaloza, R., Mencía, C., Ignatiev, A., Marques-Silva, J.: Lean kernels in description logics. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 518–533. Springer, Cham (2017). Scholar
  22. 22.
    Price, C., Spackman, K.: SNOMED clinical terms. Br. J. Healthc. Comput. Inf. Manag. 17(3), 27–31 (2000)Google Scholar
  23. 23.
    Rector, A.L., Solomon, W.D., Nowlan, W.A., Rush, T.W., Zanstra, P.E., Claassen, W.M.: A terminology server for medical language and medical information systems. Methods Inf. Med. 34(1–2), 147–157 (1995)Google Scholar
  24. 24.
    Ruch, P., Gobeill, J., Lovis, C., Geissbühler, A.: Automatic medical encoding with SNOMED categories. BMC Med. Inform. Decis. Mak. 8(Suppl. 1), S6 (2008)CrossRefGoogle Scholar
  25. 25.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 355–360. Morgan Kaufmann Publishers Inc. (2003)Google Scholar
  26. 26.
    Sidhu, E.S., Dillon, T.S., Chang, E., Sidhu, B.S.: Protein ontology development using OWL. In: OWL Experiences and Directions Workshop, OWLED, p. 188 (2005)Google Scholar
  27. 27.
    Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn ontologies. In: IJCAI 2011, pp. 1093–1098. IJCAI/AAAI (2011)Google Scholar
  28. 28.
    Simancik, F., Motik, B., Horrocks, I.: Consequence-based and fixed-parameter tractable reasoning in description logics. Artif. Intell. 209, 29–77 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Smith, B.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007)CrossRefGoogle Scholar
  30. 30.
    Wang, C., Hitzler, P.: Consequence-based procedure for description logics with self-restriction. In: Semantic Web and Web Science - 6th Chinese Semantic Web Symposium and 1st Chinese Web Science Conference, CSWS 2012, Shenzhen, China, 28–30 November 2012, pp. 169–180 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.KRDB Research CentreFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations