Advertisement

Protean Signature Schemes

  • Stephan Krenn
  • Henrich C. Pöhls
  • Kai Samelin
  • Daniel Slamanig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11124)

Abstract

We introduce the notion of Protean Signature schemes. This novel type of signature scheme allows to remove and edit signer-chosen parts of signed messages by a semi-trusted third party simultaneously. In existing work, one is either allowed to remove or edit parts of signed messages, but not both at the same time. Which and how parts of the signed messages can be modified is chosen by the signer. Thus, our new primitive generalizes both redactable (Steinfeld et al., ICISC ’01, Johnson et al., CT-RSA ’02 & Brzuska et al., ACNS ’10) and sanitizable signatures schemes (Ateniese et al., ESORICS ’05 & Brzuska et al., PKC ’09). We showcase a scenario where either primitive alone is not sufficient. Our provably secure construction (offering both strong notions of transparency and invisibility) makes only black-box access to sanitizable and redactable signature schemes, which can be considered standard tools nowadays. Finally, we have implemented our scheme; Our evaluation shows that the performance is reasonable.

References

  1. 1.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. J. Cryptol. 28(2), 351–395 (2015).  https://doi.org/10.1007/s00145-014-9182-0MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005).  https://doi.org/10.1007/11555827_10CrossRefGoogle Scholar
  3. 3.
    Beck, M.T., et al.: Practical strongly invisible and strongly accountable sanitizable signatures. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 437–452. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60055-0_23CrossRefGoogle Scholar
  4. 4.
    Bilzhause, A., Pöhls, H.C., Samelin, K.: Position paper: the past, present, and future of sanitizable and redactable signatures. In: Ares, pp. 87:1–87:9 (2017)Google Scholar
  5. 5.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_10CrossRefGoogle Scholar
  6. 6.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_29CrossRefGoogle Scholar
  7. 7.
    Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13708-2_6CrossRefGoogle Scholar
  8. 8.
    Brzuska, C., et al.: Security of sanitizable signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00468-1_18CrossRefGoogle Scholar
  9. 9.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Santizable signatures: how to partially delegate control for authenticated data. In: BIOSIG (2009)Google Scholar
  10. 10.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_26CrossRefGoogle Scholar
  11. 11.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40012-4_12CrossRefzbMATHGoogle Scholar
  12. 12.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-53997-8_2CrossRefzbMATHGoogle Scholar
  13. 13.
    Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 152–182. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_6CrossRefGoogle Scholar
  14. 14.
    Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11925-5_13CrossRefGoogle Scholar
  15. 15.
    Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31410-0_3CrossRefGoogle Scholar
  16. 16.
    Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68914-0_16CrossRefzbMATHGoogle Scholar
  17. 17.
    de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of sanitizable signatures revisited. In: Ares, pp. 188–197 (2013)Google Scholar
  18. 18.
    de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between redactable and sanitizable signature schemes. In: Jürjens, J., Piessens, F., Bielova, N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04897-0_8CrossRefGoogle Scholar
  19. 19.
    Demirel, D., Derler, D., Hanser, C., Pöhls, H.C., Slamanig, D., Traverso, G.: PRISMACLOUD D4.4: overview of functional and malleable signature schemes. Technical report, H2020 Prismacloud (2015). www.prismacloud.eu
  20. 20.
    Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for redactable signatures and new constructions. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 3–19. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30840-1_1CrossRefzbMATHGoogle Scholar
  21. 21.
    Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_25CrossRefGoogle Scholar
  22. 22.
    Fischlin, M., Harasser, P.: Invisible sanitizable signatures and public-key encryption are equivalent. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 202–220. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93387-0_11CrossRefzbMATHGoogle Scholar
  23. 23.
    Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D., Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_12CrossRefGoogle Scholar
  24. 24.
    Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Verifiable zero-knowledge order queries and updates for fully dynamic lists and trees. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 216–236. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44618-9_12CrossRefzbMATHGoogle Scholar
  25. 25.
    Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28166-7_8CrossRefzbMATHGoogle Scholar
  26. 26.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21518-6_21CrossRefGoogle Scholar
  28. 28.
    Haber, S., et al.: Efficient signature schemes supporting redaction, pseudonymization, and data deidentification. In: AsiaCCS, pp. 353–362 (2008)Google Scholar
  29. 29.
    Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Sanitizable and deletable signature. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 130–144. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00306-6_10CrossRefGoogle Scholar
  30. 30.
    Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Yet another sanitizable signature from bilinear maps. In: Ares, pp. 941–946 (2009)Google Scholar
  31. 31.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45760-7_17CrossRefGoogle Scholar
  32. 32.
    Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006).  https://doi.org/10.1007/11927587_28CrossRefGoogle Scholar
  33. 33.
    Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures. In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2015. LNCS, vol. 9481, pp. 100–117. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29883-2_7CrossRefGoogle Scholar
  34. 34.
    Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int. J. Inf. Secur. 12(6), 467–494 (2013).  https://doi.org/10.1007/s10207-013-0198-5CrossRefGoogle Scholar
  35. 35.
    Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures without random oracles. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 363–380. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45744-4_18CrossRefGoogle Scholar
  36. 36.
    Miyazaki, K.: Digitally signed document sanitizing scheme with disclosure condition control. IEICE Trans. 88–A(1), 239–246 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Pöhls, H.C., Samelin, K.: Accountable redactable signatures. In: Ares, pp. 60–69 (2015)Google Scholar
  38. 38.
    Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature—performance, mixing properties, and revisiting the property of transparency. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21554-4_10CrossRefGoogle Scholar
  39. 39.
    Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29101-2_2CrossRefzbMATHGoogle Scholar
  40. 40.
    Slamanig, D., Rass, S.: Generalizations and extensions of redactable signatures with applications to electronic healthcare. In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS 2010. LNCS, vol. 6109, pp. 201–213. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13241-4_19CrossRefGoogle Scholar
  41. 41.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45861-1_22CrossRefGoogle Scholar
  42. 42.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Traverso, G., Demirel, D., Buchmann, J.A.: Homomorphic Signature Schemes - A Survey. Springer Briefs in Computer Science. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-32115-8CrossRefzbMATHGoogle Scholar
  44. 44.
    Tsabary, R.: An equivalence between attribute-based signatures and homomorphic signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_16CrossRefGoogle Scholar
  45. 45.
    Wu, Z.Y., Hsueh, C.-W., Tsai, C.-Y., Lai, F., Lee, H.-C., Chung, Y.-F.: Redactable signatures for signed CDA documents. J. Med. Syst. 36(3), 1795–1808 (2012).  https://doi.org/10.1007/s10916-010-9639-0CrossRefGoogle Scholar
  46. 46.
    Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13708-2_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stephan Krenn
    • 1
  • Henrich C. Pöhls
    • 2
  • Kai Samelin
    • 3
    • 4
  • Daniel Slamanig
    • 1
  1. 1.AIT Austrian Institute of TechnologyViennaAustria
  2. 2.ISL & Chair of IT-SecurityUniversity of PassauPassauGermany
  3. 3.TÜV Rheinland i-sec GmbHHallbergmoosGermany
  4. 4.TU DarmstadtDarmstadtGermany

Personalised recommendations