Advertisement

Hierarchical Attribute-Based Signatures

  • Constantin-Cǎtǎlin Drǎgan
  • Daniel Gardham
  • Mark Manulis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11124)

Abstract

Attribute-based Signatures (ABS) are a powerful tool allowing users with attributes issued by authorities to sign messages while also proving that their attributes satisfy some policy. ABS schemes provide a flexible and privacy-preserving approach to authentication since the signer’s identity and attributes remain hidden within the anonymity set of users sharing policy-conform attributes. Current ABS schemes exhibit some limitations when it comes to the management and issue of attributes. In this paper we address the lack of support for hierarchical attribute management, a property that is prevalent in traditional PKIs where certification authorities are organised into hierarchies and signatures are verified along roots of trust.

Hierarchical Attribute-based Signatures (HABS) introduced in this work support delegation of attributes along paths from the top-level authority down to the users while also ensuring that signatures produced by these users do not leak their delegation paths, thus extending the original privacy guarantees of ABS schemes. Our generic HABS construction also ensures unforgeability of signatures in the presence of collusion attacks and contains an extended traceability property allowing a dedicated tracing authority to identify the signer and reveal its attribute delegation paths. We include a public verification procedure for the accountability of the tracing authority.

We anticipate that HABS will be useful for privacy-preserving authentication in applications requiring hierarchical delegation of attribute-issuing rights and where knowledge of delegation paths might leak information about signers and their attributes, e.g., in intelligent transport systems where vehicles may require certain attributes to authenticate themselves to the infrastructure but remain untrackable by the latter.

Notes

Acknowledgements

DG was supported by the UK Government PhD studentship scheme. CD and MM were supported by the EPSRC project TAPESTRY (EP/N02799X). The authors also thank the reviewers of CANS 2018 and Alfredo Rial for valuable comments.

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_12CrossRefGoogle Scholar
  2. 2.
    Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 357–386. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_14CrossRefGoogle Scholar
  3. 3.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_7CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_30CrossRefGoogle Scholar
  5. 5.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC 1988, pp. 103–112 (1988)Google Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_4CrossRefGoogle Scholar
  7. 7.
    Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_12CrossRefGoogle Scholar
  8. 8.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_29CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable credentials with attributes and their application to blockchain. In: ACMCCS 2017, pp. 683–699 (2017)Google Scholar
  10. 10.
    Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure preserving CCA secure encryption and its application to oblivious third parties. Cryptology ePrint Archive, Report 2011/319 (2011)Google Scholar
  11. 11.
    Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg, K., Zwingelberg, H.: H2.1 abc4trust architecture for developers (2011). abc4trust.eu
  12. 12.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36413-7_20CrossRefGoogle Scholar
  13. 13.
    Chaum, D.: Security without identification: transaction systems to make big brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)CrossRefGoogle Scholar
  14. 14.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22CrossRefGoogle Scholar
  15. 15.
    Ding, S., Zhao, Y., Liu, Y.: Efficient traceable attribute-based signature. In: IEEE TRUSTCOM 2014, pp. 582–589 (2014)Google Scholar
  16. 16.
    Dragan, C.-C., Gardham, D., Manulis, M.: Hierarchical attribute-based signatures. IACR Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/610
  17. 17.
    El Kaafarani, A., Ghadafi, E.: Attribute-based signatures with user-controlled linkability without random oracles. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 161–184. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71045-7_9CrossRefGoogle Scholar
  18. 18.
    El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04852-9_17CrossRefGoogle Scholar
  19. 19.
    Escala, A., Herranz, J., Morillo, P.: Revocable attribute-based signatures with adaptive security in the standard model. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21969-6_14CrossRefzbMATHGoogle Scholar
  20. 20.
    Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85855-3_14CrossRefGoogle Scholar
  21. 21.
    Gagné, M., Narayan, S., Safavi-Naini, R.: Short pairing-efficient threshold-attribute-based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 295–313. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36334-4_19CrossRefzbMATHGoogle Scholar
  22. 22.
    Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 391–409. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16715-2_21CrossRefGoogle Scholar
  23. 23.
    Gisdakis, S., Lagana, M., Giannetsos, T., Papadimitratos, P.: SEROSA: service oriented security architecture for vehicular communications. In: IEEE VNC 2013, pp. 111–118 (2013)Google Scholar
  24. 24.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  25. 25.
    Guo, J., Baugh, J.P., Wang, S.: A group signature based secure and privacy-preserving vehicular communication framework. In: Mobile NVE 2007, pp. 103–108 (2007)Google Scholar
  26. 26.
    Herranz, J.: Attribute-based signatures from RSA. TCS 527, 73–82 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hubaux, J.-P., Čapkun, S., Luo, J.: The security and privacy of smart vehicles. IEEE Secur. Priv. 2(3), 49–55 (2004)CrossRefGoogle Scholar
  28. 28.
    Kaaniche, N., Laurent, M., Rocher, P.-O., Kiennert, C., Garcia-Alfaro, J.: \(\cal{PCS}\), A privacy-preserving certification scheme. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 239–256. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67816-0_14CrossRefGoogle Scholar
  29. 29.
    Kamat, P., Baliga, A., Trappe, W.: An identity-based security framework for vanets. In: ACM VANET 2006, pp. 94–95. ACM (2006)Google Scholar
  30. 30.
    Krzywiecki, Ł., Sulkowska, M., Zagórski, F.: Hierarchical ring signatures revisited – unconditionally and perfectly anonymous schnorr version. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 329–346. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24126-5_19CrossRefGoogle Scholar
  31. 31.
    Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications. In: ACM ASIACCS 2010, pp. 60–69. ACM (2010)Google Scholar
  32. 32.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_24CrossRefGoogle Scholar
  33. 33.
    Neven, G., Baldini, G., Camenisch, J., Neisse, R.: Privacy-preserving attribute-based credentials in cooperative intelligent transport systems. In: IEEE VNC 2017, pp. 131–138 (2017)Google Scholar
  34. 34.
    Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_9CrossRefGoogle Scholar
  35. 35.
    Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_3CrossRefGoogle Scholar
  36. 36.
    Petit, J., Schaub, F., Feiri, M., Kargl, F.: Pseudonym schemes in vehicular networks: a survey. IEEE Commun. Surv. Tutor. 17(1), 228–255 (2015)CrossRefGoogle Scholar
  37. 37.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_32CrossRefGoogle Scholar
  38. 38.
    Sampigethaya, K., Li, M., Huang, L., Poovendran, R.: AMOEBA: robust location privacy scheme for VANET. IEEE J.-SAC 25(8), 1569–1589 (2007)Google Scholar
  39. 39.
    Schaub, F., Ma, Z., Kargl, F.: Privacy requirements in vehicular communication systems. In: CSE 2009, pp. 139–145 (2009)Google Scholar
  40. 40.
    Sun, J., Zhang, C., Zhang, Y., Fang, Y.M.: An identity-based security system for user privacy in vehicular ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 21(9), 1227–1239 (2010)CrossRefGoogle Scholar
  41. 41.
    Trolin, M., Wikström, D.: Hierarchical Group Signatures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 446–458. Springer, Heidelberg (2005).  https://doi.org/10.1007/11523468_37CrossRefGoogle Scholar
  42. 42.
    Tsabary, R.: An equivalence between attribute-based signatures and homomorphic signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Constantin-Cǎtǎlin Drǎgan
    • 1
  • Daniel Gardham
    • 1
  • Mark Manulis
    • 1
  1. 1.Surrey Centre for Cyber SecurityUniversity of SurreyGuildfordUK

Personalised recommendations