Advertisement

Faster Privacy-Preserving Location Proximity Schemes

  • Kimmo JärvinenEmail author
  • Ágnes KissEmail author
  • Thomas SchneiderEmail author
  • Oleksandr TkachenkoEmail author
  • Zheng YangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11124)

Abstract

In the last decade, location information became easily obtainable using off-the-shelf mobile devices. This gave a momentum to developing Location Based Services (LBSs) such as location proximity detection, which can be used to find friends or taxis nearby. LBSs can, however, be easily misused to track users, which draws attention to the need of protecting privacy of these users.

In this work, we address this issue by designing, implementing, and evaluating multiple algorithms for Privacy-Preserving Location Proximity (PPLP) that are based on different secure computation protocols. Our PPLP protocols are well-suited for different scenarios: for saving bandwidth, energy/computational power, or for faster runtimes. Furthermore, our algorithms have runtimes of a few milliseconds to hundreds of milliseconds and bandwidth of hundreds of bytes to one megabyte. In addition, the computationally most expensive parts of the PPLP computation can be precomputed in our protocols, such that the input-dependent online phase runs in just a few milliseconds.

Keywords

Location privacy Proximity Secure computation Homomorphic encryption 

Notes

Acknowledgements

We thank Per Hallgren for providing the raw data of his benchmarks for comparison. This work has been co-funded by the DFG as part of project E4 within the CRC 1119 CROSSING, and by the German Federal Ministry of Education and Research (BMBF) and the Hessen State Ministry for Higher Education, Research and the Arts (HMWK) within CRISP. This work has been also co-funded by the INSURE project (303578) of Academy of Finland and by National Natural Science Foundation of China (Grant No. 61872051).

References

  1. 1.
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: CCS, pp. 535–548. ACM (2013)Google Scholar
  2. 2.
    Atallah, M.J., Du, W.: Secure multi-party computational geometry. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 165–179. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44634-6_16CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: CCS (1993)Google Scholar
  4. 4.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)CrossRefGoogle Scholar
  5. 5.
    Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of boolean functions over the basis (\(\wedge \), \(\oplus \), 1). TCS 235(1), 43–57 (2000)Google Scholar
  6. 6.
    Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving user location privacy in mobile data management infrastructures. In: Danezis, G., Golle, P. (eds.) PETS 2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006).  https://doi.org/10.1007/11957454_23CrossRefGoogle Scholar
  7. 7.
    Damgard, I., Geisler, M., Kroigard, M.: A correction to ’efficient and secure comparison for on-line auctions’. IJACT 1(4), 323–324 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: NDSS (2015)Google Scholar
  9. 9.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: CRYPTO (1984)Google Scholar
  10. 10.
    Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03168-7_14CrossRefGoogle Scholar
  11. 11.
    Finch, S.R.: Mathematical Constants, vol. 93. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  12. 12.
    Freni, D., Ruiz Vicente, C., Mascetti, S., Bettini, C., Jensen, C.S.: Preserving location and absence privacy in geo-social networks. In: CIKM (2010)Google Scholar
  13. 13.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC (1987)Google Scholar
  15. 15.
    Hallgren, P.A.: Robust location privacy. Ph.D. thesis, Chalmers University of Technology (2017). http://www.cse.chalmers.se/research/group/security/pages/publications/perh-phd/phd-thesis.pdf
  16. 16.
    Hallgren, P.A., Ochoa, M., Sabelfeld, A.: InnerCircle: a parallelizable decentralized privacy-preserving location proximity protocol. In: PST (2015)Google Scholar
  17. 17.
    Hallgren, P.A., Orlandi, C., Sabelfeld, A.: PrivatePool: privacy-preserving ridesharing. In: CSF (2017)Google Scholar
  18. 18.
    Johansson, N.A., Wang, Y.-P.E., Eriksson, E., Hessler, M.: Radio access for ultra-reliable and low-latency 5G communications. In: ICC Workshop (2015)Google Scholar
  19. 19.
    Järvinen, K., Kiss, A., Schneider, T., Tkachenko, O., Yang, Z.: Faster privacy-preserving location proximity schemes. Cryptology ePrint Archive, Report 2018/694 (2018). http://ia.cr/2018/694
  20. 20.
    Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10433-6_1CrossRefzbMATHGoogle Scholar
  21. 21.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_40CrossRefzbMATHGoogle Scholar
  22. 22.
    Li, M., Ruan, N., Qian, Q., Zhu, H., Liang, X., Yu, L.: SPFM: scalable and privacy-preserving friend matching in mobile cloud. IEEE IoT J. 4(2), 583–591 (2017)Google Scholar
  23. 23.
    Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  24. 24.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457. ACM/SIAM (2001)Google Scholar
  25. 25.
    Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location privacy via private proximity testing. In: NDSS (2011)Google Scholar
  26. 26.
    Pagh, A., Pagh, R., Rao, S.S.: An optimal bloom filter replacement. In: SODA (2005)Google Scholar
  27. 27.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16CrossRefGoogle Scholar
  28. 28.
    Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory 24(1), 106–110 (1978)CrossRefGoogle Scholar
  29. 29.
    Šeděnka, J., Gasti, P.: Privacy-preserving distance computation and proximity testing on earth, done right. In: ASIACCS (2014)Google Scholar
  30. 30.
    Šikšnys, L., Thomsen, J.R., Šaltenis, S., Yiu, M.L., Andersen, O.: A location privacy aware friend locator. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 405–410. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02982-0_29CrossRefGoogle Scholar
  31. 31.
    Siksnys, L., Thomsen, J.R., Saltenis, S., Yiu, M.L.: Private and flexible proximity detection in mobile social networks. In: MDM (2010)Google Scholar
  32. 32.
    Yao, A.C.: Protocols for secure computations. In: SFCS (1982)Google Scholar
  33. 33.
    Yu, W., Liu, Z., Chen, C., Yang, B., Guan, X.: Privacy-preserving design for emergency response scheduling system in medical social networks. Peer-to-Peer Netw. Appl. 10(2), 340–356 (2017)CrossRefGoogle Scholar
  34. 34.
    Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_8CrossRefzbMATHGoogle Scholar
  35. 35.
    Zheng, Y., Li, M., Lou, W., Hou, Y.T.: Location based handshake and private proximity test with location tags. IEEE Dependable Secure Comput. 14(4), 406–419 (2017)CrossRefGoogle Scholar
  36. 36.
    Zhong, G., Goldberg, I., Hengartner, U.: Louis, lester and pierre: three protocols for location privacy. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 62–76. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75551-7_5CrossRefGoogle Scholar
  37. 37.
    Zhu, H., Wang, F., Lu, R., Liu, F., Fu, G., Li, H.: Efficient and privacy-preserving proximity detection schemes for social applications. IEEE Internet Things J. 5(4), 2947–2957 (2018). https://ieeexplore.ieee.org/document/8085131/CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of HelsinkiHelsinkiFinland
  2. 2.TU DarmstadtDarmstadtGermany
  3. 3.Singapore University of Technology and DesignSingaporeSingapore

Personalised recommendations