Advertisement

On Algebras with Effectful Iteration

  • Stefan MiliusEmail author
  • Jiří Adámek
  • Henning Urbat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11202)

Abstract

For every finitary monad T on sets and every endofunctor F on the category of T-algebras we introduce the concept of an ffg-Elgot algebra for F, that is, an algebra admitting coherent solutions for finite systems of recursive equations with effects represented by the monad T. The goal of this paper is to study the existence and construction of free ffg-Elgot algebras. To this end, we investigate the locally ffg fixed point \(\varphi F\), the colimit of all F-coalgebras with free finitely generated carrier, which is shown to be the initial ffg-Elgot algebra. This is the technical foundation for our main result: the category of ffg-Elgot algebras is monadic over the category of T-algebras.

References

  1. 1.
    Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput. Sci. 2(5:4), 1–31 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Struct. Comput. Sci. 16(6), 1085–1131 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Adámek, J., Milius, S., Velebil, J.: Semantics of higher-order recursion schemes. Log. Methods Comput. Sci. 7(11:5), 1–43 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  5. 5.
    Adámek, J., Rosický, J., Vitale, E.: What are sifted colimits? Theory Appl. Categ. 23, 251–260 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Adámek, J., Rosický, J., Vitale, E.: Algebraic Theories. Cambridge University Press, New York (2011)zbMATHGoogle Scholar
  7. 7.
    Applegate, H.: Acyclic models and resolvent functors. Ph.D. thesis, Columbia University (1965)Google Scholar
  8. 8.
    Barr, M.: Coequalizers and free triples. Math. Z. 116, 307–322 (1970)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Log. 14(1:7), 7:1–7:52 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25, 95–169 (1983)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ésik, Z., Maletti, A.: Simulation vs. equivalence. In: Proceedings of 6th International Conference on Foundations of Computer Science, pp. 119–122. CSREA Press (2010)Google Scholar
  12. 12.
    Ésik, Z., Maletti, A.: Simulations of weighted tree automata. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 321–330. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18098-9_34CrossRefzbMATHGoogle Scholar
  13. 13.
    Fiore, M., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: Proceedings of LICS 1999, pp. 193–202. IEEE Press (1999)Google Scholar
  14. 14.
    Freyd, P.: Rédei’s finiteness theorem for commutative semigroups. Proc. Amer. Math. Soc. 19(4), 1003 (1968)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Johnstone, P.T.: Adjoint lifting theorems for categories of algebras. Bull. Lond. Math. Soc. 7, 294–297 (1975)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Johnstone, P.T.: Topos Theory. Academic Press, London (1977)zbMATHGoogle Scholar
  17. 17.
    Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161 (1968)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Milius, S., Adámek, J., Urbat, H.: On algebras with effectful iteration. https://www8.cs.fau.de/staff/milius/publications/files/amv_ffg-elgot_2018.pdf
  19. 19.
    Milius, S.: Completely iterative algebras and completely iterative monads. Inform. Comput. 196, 1–41 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings of LICS 2010, pp. 449–458. IEEE Computer Society (2010)Google Scholar
  21. 21.
    Milius, S.: Proper functors and fixed points for finite behaviour (2018, submitted). arXiv:1705.09198
  22. 22.
    Milius, S.: Proper functors and their rational fixed point. In: Bonchi, F., König, B. (eds.) Proceedings of 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017), LIPIcs, vol. 72, pp. 18:1–18:15. Schloss Dagstuhl (2017)Google Scholar
  23. 23.
    Milius, S., Pattinson, D., Wißmann, T.: A new foundation for finitary corecursion and iterative algebras (2018, submitted). arXiv:1802.08070
  24. 24.
    Milius, S., Pattinson, D., Wißmann, T.: A new foundation for finitary corecursion. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 107–125. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49630-5_7CrossRefzbMATHGoogle Scholar
  25. 25.
    Milius, S., Schröder, L., Wißmann, T.: Regular behaviours with names: on rational fixpoints of endofunctors on nominal sets. Appl. Categ. Struct. 24(5), 663–701 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Milius, S., Wißmann, T.: Finitary corecursion for the infinitary lambda calculus. In: Proceedings of CALCO 2015, LIPIcs, vol. 35, pp. 336–351 (2015)Google Scholar
  27. 27.
    Nelson, E.: Iterative algebras. Theoret. Comput. Sci. 25, 67–94 (1983)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Plotkin, G.D., Turi, D.: Towards a mathematical operational semantics. In: Proceedings of Logic in Computer Science (LICS 1997), pp. 280–291 (1997)Google Scholar
  29. 29.
    Rédei, L.: The Theory of Finitely Generated Commutative Semigroups. Oxford, Pergamon, Edinburgh, New York (1965)zbMATHGoogle Scholar
  30. 30.
    Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci 9(1:9), 1–27 (2013)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Sokolova, A., Woracek, H.: Congruences of convex algebras. J. Pure Appl. Algebra 219(8), 3110–3148 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sokolova, A., Woracek, H.: Proper semirings and proper convex functors. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018, LNCS, vol. 10803, pp. 331–347. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-89366-2_18CrossRefGoogle Scholar
  33. 33.
    Tiuryn, J.: Unique fixed points vs. least fixed points. Theoret. Comput. Sci. 12, 229–254 (1980)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Urbat, H.: Finite behaviours and finitary corecursion. In: Proceedings of CALCO 2017, LIPIcs, vol. 72, pp. 24:1–24:15 (2017)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Czech Technical University in PraguePragueCzech Republic
  2. 2.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations