Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages

  • Ulrich DorschEmail author
  • Stefan Milius
  • Lutz Schröder
  • Thorsten Wißmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11202)


We introduce a generic expression language describing behaviours of finite coalgebras over sets; besides relational systems, this covers, e.g., weighted, probabilistic, and neighbourhood-based system types. We prove a generic Kleene-type theorem establishing a correspondence between our expressions and finite systems. Our expression language is similar to one introduced in previous work by Myers but has a semantics defined in terms of a particular form of predicate liftings as used in coalgebraic modal logic; in fact, our expressions can be regarded as a particular type of modal fixed point formulas. The predicate liftings in question are required to satisfy a natural preservation property; we show that this property holds in particular for the Moss liftings introduced by Marti and Venema in work on lax extensions.


  1. 1.
    Aceto, L., Hennessy, M.: Termination, deadlock, and divergence. J. ACM 39, 147–187 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aceto, L., Ingólfsdóttir, A., Larsen, K., Srba, J.: Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Adámek, J., Trnková, V.: Automata and Algebras in Categories, Mathematics and Its Applications, vol. 37. Kluwer, Dordrecht (1990)zbMATHGoogle Scholar
  4. 4.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: International Joint Conference on Artificial Intelligence, IJCAI 2005. Morgan-Kaufmann (2005)Google Scholar
  5. 5.
    Barr, M.: Relational algebras. In: Reports of the Midwest Category Seminar. LNM, vol. 137. Springer (1970)Google Scholar
  6. 6.
    Bekič, H.: Definable operations in general algebras, and the theory of automata and flowcharts. In: Jones, C.B. (ed.) Programming Languages and Their Definition. LNCS, vol. 177, pp. 30–55. Springer, Heidelberg (1984). Scholar
  7. 7.
    Bradfield, J., Stirling, C.: Modal logics and mu-calculi. In: Handbook of Process Algebra, pp. 293–332. Elsevier (2001)Google Scholar
  8. 8.
    Cîrstea, C., Kupke, C., Pattinson, D.: EXPTIME tableaux for the coalgebraic mu-calculus. Log. Methods Comput. Sci. 7(3:3), 33 (2011)zbMATHGoogle Scholar
  9. 9.
    Cîrstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. Comput. J. 54, 31–41 (2011)CrossRefGoogle Scholar
  10. 10.
    Godskesen, J., Ingólfsdóttir, A., Zeeberg, M.: Fra Hennessy-Milner logik til CCS-processer. Master’s thesis, Aalborg University (1987)Google Scholar
  11. 11.
    Goncharov, Sergey, Milius, Stefan, Silva, Alexandra: Towards a coalgebraic Chomsky hierarchy. In: Diaz, Josep, Lanese, Ivan, Sangiorgi, Davide (eds.) TCS 2014. LNCS, vol. 8705, pp. 265–280. Springer, Heidelberg (2014). Scholar
  12. 12.
    Gorín, Daniel, Schröder, Lutz: Simulations and bisimulations for coalgebraic modal logics. In: Heckel, Reiko, Milius, Stefan (eds.) CALCO 2013. LNCS, vol. 8089, pp. 253–266. Springer, Heidelberg (2013). Scholar
  13. 13.
    Gorín, D., Schröder, L.: Subsumption checking in conjunctive coalgebraic fixpoint logics. In: Advances in Modal Logic, AiML 2014. pp. 254–273. College Publications (2014)Google Scholar
  14. 14.
    Graf, S., Sifakis, J.: A modal characterization of observational congruence on finite terms of CCS. Inf. Control 68, 125–145 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gumm, H.P., Schröder, T.: Monoid-labeled transition systems. In: Coalgebraic Methods in Computer Science, CMCS 2001. ENTCS, vol. 44, pp. 185–204. Elsevier (2001)Google Scholar
  16. 16.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. Theor. Comput. Sci. 27, 333–354 (1983)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19, 427–443 (1997)CrossRefGoogle Scholar
  18. 18.
    Kurz, A., Leal, R.: Equational coalgebraic logic. In: Mathematical Foundations of Programming Semantics, MFPS 2009. ENTCS, vol. 249, pp. 333–356. Elsevier (2009)Google Scholar
  19. 19.
    Leal, R.: Predicate liftings versus nabla modalities. In: Coalgebraic Methods in Computer Science, CMCS 2008. ENTCS, vol. 203, pp. 195–220. Elsevier (2008)Google Scholar
  20. 20.
    Marti, J., Venema, Y.: Lax extensions of coalgebra functors and their logic. J. Comput. Syst. Sci. 81(5), 880–900 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings of the 25th Annual Symposium on Logic in Computer Science (LICS 2010). pp. 449–458. IEEE Computer Society (2010)Google Scholar
  22. 22.
    Milius, S., Pattinson, D., Schröder, L.: Generic trace semantics and graded monads. In: Coalgebraic and Algebraic Methods in Computer Science, CALCO 2015. LIPIcs, vol. 35, pp. 253–269 (2015)Google Scholar
  23. 23.
    Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Moss, L.: Coalgebraic logic. Ann. Pure Appl. Log. 96, 277–317 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Myers, R.: Rational coalgebraic machines in varieties: languages, completeness and automatic proofs. Ph.D. thesis, Imperial College London (2013)Google Scholar
  26. 26.
    Parikh, R.: Propositional game logic. In: Foundations of Computer Science, FOCS 1983. IEEE (1983)Google Scholar
  27. 27.
    Pattinson, D.: Coalgebraic modal logic: soundness, completeness and decidability of local consequence. Theor. Comput. Sci. 309, 177–193 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Log. 45, 19–33 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Peleg, D.: Concurrent dynamic logic. J. ACM 34, 450–479 (1987)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theor. Comput. Sci. 390, 230–247 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Schröder, L., Venema, Y.: Completeness of flat coalgebraic fixpoint logics. ACM Trans. Comput. Log. 19, 4:1–4:34 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Quantitative Kleene coalgebras. Inf. Comput. 209, 822–849 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci. 9(1:9), 27 (2013)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Silva, A., Bonsangue, M., Rutten, J.: Non-deterministic Kleene coalgebras. Log. Methods Comput. Sci. 6(3:23), 39 (2010)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence. Inf. Comput. 110, 149–163 (1994)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36, 423–439 (1965)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Trnková, V.: General theory of relational automata. Fund. Inform. 3, 189–234 (1980)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Venema, Y.: Automata and fixed point logic: a coalgebraic perspective. Inf. Comput. 204, 637–678 (2006)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Weinert, H.J.: On \(0\)-simple semirings, semigroup semirings, and two kinds of division semirings. Semigroup Forum 28, 313–333 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations