Advertisement

Categorical Büchi and Parity Conditions via Alternating Fixed Points of Functors

  • Natsuki Urabe
  • Ichiro Hasuo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11202)

Abstract

Categorical studies of recursive data structures and their associated reasoning principles have mostly focused on two extremes: initial algebras and induction, and final coalgebras and coinduction. In this paper we study their in-betweens. We formalize notions of alternating fixed points of functors using constructions that are similar to that of free monads. We find their use in categorical modeling of accepting run trees under the Büchi and parity acceptance condition. This modeling abstracts away from states of an automaton; it can thus be thought of as the “behaviors” of systems with the Büchi or parity conditions, in a way that follows the tradition of coalgebraic modeling of system behaviors.

Notes

Acknowledgments

We thank Kenta Cho, Shin’ya Katsumata and the anonymous referees for useful comments. The authors are supported by JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), and JSPS KAKENHI Grant Numbers 15KT0012 & 15K11984. Natsuki Urabe is supported by JSPS KAKENHI Grant Number 16J08157.

References

  1. 1.
    Adámek, J., Koubek, V.: Least fixed point of a functor. J. Comput. Syst. Sci. 19(2), 163–178 (1979).  https://doi.org/10.1016/0022-0000(79)90026-6MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adámek, J., Milius, S., Moss, L.S.: Fixed points of functors. J. Log. Algebraic Methods Program. 95, 41–81 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arnold, A., Niwiński, D.: Rudiments of \(\mu \)-Calculus. Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam (2001)zbMATHGoogle Scholar
  4. 4.
    Borceux, F.: Handbook of Categorical Algebra, Encyclopedia of Mathematics and its Applications, vol. 1. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  5. 5.
    Ciancia, V., Venema, Y.: Stream automata are coalgebras. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 90–108. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32784-1_6CrossRefGoogle Scholar
  6. 6.
    Cleaveland, R., Klein, M., Steffen, B.: Faster model checking for the modal mu-calculus. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 410–422. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-56496-9_32CrossRefGoogle Scholar
  7. 7.
    Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput. Sci. 25, 95–169 (1983).  https://doi.org/10.1016/0304-3975(83)90059-2MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space reduction for Büchi automata. SICOMP 34(5), 1159–1175 (2005)CrossRefGoogle Scholar
  9. 9.
    Ghani, N., Hancock, P., Pattinson, D.: Representations of stream processors using nested fixed points. Log. Methods Comput. Sci. 5(3) (2009)Google Scholar
  10. 10.
    Hasuo, I., Jacobs, B.: Context-free languages via coalgebraic trace semantics. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 213–231. Springer, Heidelberg (2005).  https://doi.org/10.1007/11548133_14CrossRefGoogle Scholar
  11. 11.
    Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log. Methods Comput. Sci. 3(4) (2007)Google Scholar
  12. 12.
    Jacobs, B.: Trace semantics for coalgebras. Electr. Notes Theor. Comput. Sci. 106, 167–184 (2004).  https://doi.org/10.1016/j.entcs.2004.02.031MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, New York (2016)zbMATHGoogle Scholar
  14. 14.
    Milius, S.: Completely iterative algebras and completely iterative monads. Inf. Comput. 196(1), 1–41 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mulry, P.S.: Lifting theorems for Kleisli categories. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 304–319. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58027-1_15CrossRefGoogle Scholar
  16. 16.
    Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. Electr. Notes Theor. Comput. Sci. 29, 259–274 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59126-6_7CrossRefGoogle Scholar
  18. 18.
    Urabe, N., Hasuo, I.: Coalgebraic infinite traces and Kleisli simulations. CoRR abs/1505.06819 (2015). http://arxiv.org/abs/1505.06819
  19. 19.
    Urabe, N., Hasuo, I.: Fair simulation for nondeterministic and probabilistic Buechi automata: a coalgebraic perspective. LMCS 13(3) (2017)Google Scholar
  20. 20.
    Urabe, N., Hasuo, I.: Categorical Büchi and parity conditions via alternating fixed points of functors. arXiv preprint (2018)Google Scholar
  21. 21.
    Urabe, N., Shimizu, S., Hasuo, I.: Coalgebraic trace semantics for Büchi and parity automata. In: Proceedings of the CONCUR 2016. LIPIcs, vol. 59, pp. 24:1–24:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.The University of TokyoTokyoJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations