Role of Benchtop Microtomographic Systems in Tissue Engineering

  • Rossella BediniEmail author
  • Deborah Meleo
  • Raffaella Pecci
Part of the Fundamental Biomedical Technologies book series (FBMT)


Microtomographic system for laboratory (microCT) is a miniaturized form of the traditional computerized tomography. It allows for three-dimensional (3D) investigations of small radiopaque objects, with a high resolution of few micrometers, in a noninvasive and nondestructive way. Compared with the conventional electron microscopy techniques that produce only bidimensional images, the microCT is used to obtain a three-dimensional analysis of a sample with no need to cut and no need of particular surface treatments at all. Therefore, the microCT may satisfy the ideal requirements of 3D microscopy.

In this chapter, through a clinical research work of bone tissue regenerative medicine, we want to highlight the peculiar characteristics of this laboratory instrumentation for 3D imaging.

Three different bone substitute biomaterials were implanted in the human bone in an in vivo clinical study. Subsequently, human bone samples grafted with the aforementioned biomaterials were studied by microCT and histology analysis.

Then, 2D histological and 3D microCT images of these samples have been obtained, together with morphometric analysis performed on the microCT data. Although the microCT analysis shows better results for investigating bone substitute biomaterials implanted in human bone tissue, the histological analysis is still to be complementarily coupled for the observation of soft tissues and blood vessels.

Therefore, the main objective of this research work was to provide surgeons with the most suitable bone substitute to be used as scaffolds in specific clinical applications.

In tissue engineering, the benchtop microCT can then contribute to the design of a 3D biocompatible scaffold for the in vitro growth of autologous cells and, more generally, for wound repair and tissue regeneration.


X-ray benchtop microtomography (microCT) Tissue engineering Bone substitute biomaterials Human bone 



The authors acknowledge and thank Prof. G. Soda of Sapienza, University of Rome, Experimental Medicine Dept., for having supported the microCT observation with histological analysis.


  1. 1.
    Chiapasco M, Romeo E (2002) La riabilitazione implantoprotesica nei casi complessi. UTET, MilanGoogle Scholar
  2. 2.
    Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R (2005) Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res 8(4):277–284CrossRefGoogle Scholar
  3. 3.
    Perilli E, Baruffaldi F, Visentin M, Bordini B, Traina F, Cappello A, Viceconti M (2007) MicroCT examination of human bone specimens: effects of polymethylmethacrylate embedding on structural parameters. J Microsc 225(Pt 2):192–200CrossRefGoogle Scholar
  4. 4.
    Gielkens PF, Schortinghuis J, de Jong JR, Raghoebar GM, Stegenga B, Bos RR (2008) Vivosorb, Bio-Gide, and Gore-Tex as barrier membranes in rat mandibular defects: an evaluation by microradiography and micro-CT. Clin Oral Implants Res 19(5):516–521CrossRefGoogle Scholar
  5. 5.
    Haıat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. J Bone Miner Res 22(5):665–674CrossRefGoogle Scholar
  6. 6.
    Jones JR, Poologasundarampillai G, Atwood RC, Bernard D, Lee PD (2007) Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials 28(7):1404–1413CrossRefGoogle Scholar
  7. 7.
    Kachelrieb M (2008) Micro-CT. Handb Exp Pharmacol 185(1):23–52 (Review)CrossRefGoogle Scholar
  8. 8.
    Kamburoglu K, Barenboim SF, Ariturk T, Kaffe I (2008) Quantitative measurements obtained by micro-computed tomography and confocal laser scanning microscopy. Dentomaxillofac Radiol 37(7):385–391CrossRefGoogle Scholar
  9. 9.
    Kerckhofs G, Schrooten J, Van Cleynenbreugel T, Lomov SV, Wevers M (2008) Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Rev Sci Instrum 79(1):013711CrossRefGoogle Scholar
  10. 10.
    Lin-Gibson S, Cooper JA, Landis FA, Cicerone MT (2007) Systematic investigation of porogen size and content on scaffold morphometric parameters and properties. Biomacromolecules 8(5):1511–1518 (Epub 2007 Mar 24)CrossRefGoogle Scholar
  11. 11.
    Maréchal M, Luyten F, Nijs J, Postnov A, Schepers E, van Steenberghe D (2005) Histomorphometry and micro-computed tomography of bone augmentation under a titanium membrane. Clin Oral Implants Res 16(6):708–714CrossRefGoogle Scholar
  12. 12.
    Papadimitropoulos A, Mastrogiacomo M, Peyrin F, Molinari E, Komlev VS, Rustichelli F, Cancedda R (2007) Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: an X-ray computed microtomography study. Biotechnol Bioeng 98(1):271–281CrossRefGoogle Scholar
  13. 13.
    Parkinson IH, Badiei A, Fazzalari NL (2008) Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australas Phys Eng Sci Med 31(2):160–164CrossRefGoogle Scholar
  14. 14.
    Stauber M, Muller R (2008) Micro-computed tomography: a method for the non-destructive evaluation of the three-dimensional structure of biological specimens. Methods Mol Biol 455:273–292CrossRefGoogle Scholar
  15. 15.
    van Lenthe HG, Hagenmuller H, Bohner M, Hollister SJ, Meinel L, Muller R (2007) Non destructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28:2479–2490CrossRefGoogle Scholar
  16. 16.
    Waarsing JH, Day JS, Weinans H (2004) An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 19(10):1640–1650 (Epub 2004 Jul 12)CrossRefGoogle Scholar
  17. 17.
    Cowan CM, Aghaloo T, Chou YF, Walder B, Zhang X, Soo C, Ting K, Wu B (2007) MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng 3(3):501–512CrossRefGoogle Scholar
  18. 18.
    Burchardt H (1983) The biology of bone graft repair. Clin Orthop Relat Res 174:28–42Google Scholar
  19. 19.
    Komlev VS, Peyrin F, Mastrogiacomo M, Cedola A, Papadimitropoulos A, Rustichelli F, Cancedda R (2006) Kinetics of in vivo bone deposition by bone marrow stromal cells into porous calcium phosphate scaffolds: an X-ray computed microtomography study. Tissue Eng 12(12):3449–3458CrossRefGoogle Scholar
  20. 20.
    Hofmann S, Hilbe M, Fajardo RJ, Hagenmüller H, Nuss K, Arras M, Müller R, von Rechenberg B, Kaplan DL, Merkle HP, Meinel L (2013) Remodeling of tissue-engineered bone structures in vivo. Eur J Pharm Biopharm Sep 85(1):119–129CrossRefGoogle Scholar
  21. 21.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619CrossRefGoogle Scholar
  22. 22.
    Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899CrossRefGoogle Scholar
  23. 23.
    Guldberg RE, Duvall CL, Peister A, Oest ME, Lin AS, Palmer AW, Levenston ME (2008) 3D imaging of tissue integration with porous biomaterials. Biomaterials 29(28):3757–3761 (Epub2008 Jul 16).CrossRefGoogle Scholar
  24. 24.
    Chu TM, Warden SJ, Turner CH, Stewart RL (2007) Segmental bone regeneration using a load bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials 28(3):459–467CrossRefGoogle Scholar
  25. 25.
    Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4(1):3–11CrossRefGoogle Scholar
  26. 26.
    Manescu A, Giuliani A, Mazzoni S, Mohammadi S, Tromba G, Diomede F, Zini N, Piattelli A, Trubiani O (2016) Osteogenic potential of dual-blocks cultured with periodontal ligament stem cells: in-vitro and synchrotron microtomography study. J Periodontal Res 51(1):112–124CrossRefGoogle Scholar
  27. 27.
    Mazzoni S, Mohammadi S, Tromba G, Diomede F, Piattelli A, Trubiani O, Giuliani A (2017) Role of cortico-cancellous heterologous bone in human periodontal ligament stem cell xeno-free culture studied by synchrotron radiation phase-contrast microtomography. Int J Mol Sci 18(2):364CrossRefGoogle Scholar
  28. 28.
    Manescu A, Oancea R, Todea C, Rusu LC, Mazzoni S, Negrutiu ML, Sinescu C, Giuliani A. (2016) On long term effects of low power laser therapy on bone repair: a demonstrative study by synchrotron radiation-based phase-contrast microtomography. Int J Radiol Imaging Technol. 2:010, 2(1)Google Scholar
  29. 29.
    Freed LE, Guilak F, Guo XE, Grey ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G (2006) Advanced tools for tissue engineering: scaffolds, bioreactors and signaling. Tissue Eng 12:3285–3305CrossRefGoogle Scholar
  30. 30.
    Bedini R, Meleo D, Pecci R, Pacifici L (2009) The use of microtomography in bone tissue and biomaterial three-dimensional analysis. Ann Ist Super Sanita 45(2):178–184PubMedGoogle Scholar
  31. 31.
    Meleo D, Bedini R, Pecci R, Mangione F, Pacifici L (2012) Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology. Ann Ist Super Sanita 48(1):59–64Google Scholar
  32. 32.
    Bedini R (2012) A new technology in biomedical engineering analysis: the 3Dimensional microtomography. Preface Ann Ist Super Sanita 48(1):7–9PubMedGoogle Scholar
  33. 33.
    Barbetta A, Bedini R, Pecci R, Dentini M (2012) Role of x-ray microtomography in tissue engineering. Ann Ist Super Sanita 48(1):10–18PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rossella Bedini
    • 1
    Email author
  • Deborah Meleo
    • 2
  • Raffaella Pecci
    • 1
  1. 1.National Centre of Innovative Technologies in Public HealthItalian National Institute of HealthRomeItaly
  2. 2.FreelancerRomeItaly

Personalised recommendations