Advertisement

Into the Heart: What Contributions to Cardiac Regeneration?

  • Alessandra GiulianiEmail author
  • Mara Mencarelli
Chapter
Part of the Fundamental Biomedical Technologies book series (FBMT)

Abstract

One of the leading causes of death in the western world is undoubtedly cardiovascular diseases, with special reference to myocardial infarction and consequent heart failure. The therapeutic strategies adopted nowadays are based on drug therapy, coronary artery angioplasty, pacemakers and implantable defibrillator, coronary artery bypass grafts, ventricular remodeling, dynamic cardiomyoplasty, organ transplantation, and mechanical circulatory assistance devices. However, all these procedures are often ineffective and invasive. Moreover, myocardial heart engineering has experienced significant progress over the last 10 years, with fundamental advances in stem cell biology and knowledge of biomaterials. However, one of the limiting factors in the overall interpretation of clinical results obtained by cell therapy is represented by the lack of in vivo visualization of the injected cells and of their fate within the myocardium. This chapter shows that X-ray microtomography (microCT) and in particular phase-contrast imaging may offer the unique possibility to detect with high definition and resolution the three-dimensional spatial distribution of stem cells, once injected inside an infarcted heart in small animal models. It was shown, through microCT, the migration of these cells within the damaged cardiac tissue, achieving an appropriate identification and localization of the injected cells. Thus, phase-contrast microCT appears to be an innovative and exclusive way to investigate the cellular events involved in cardiac regeneration and represents a promising tool for future clinical translations.

Keywords

Phase contrast Myocardium engineering Stem cells Synchrotron radiation Contrast agents 

References

  1. 1.
    Roger VL (2013) Epidemiology of heart failure. Circ Res 113:646–659CrossRefGoogle Scholar
  2. 2.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB (2015) Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322 Corrigendum: (2015). Circulation, 131, e98; Circulation, 131, e117; Circulation, 131, e163; Circulation, 131, e319Google Scholar
  3. 3.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics Committee, Stroke Statistics Subcommittee (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603.  https://doi.org/10.1161/CIR.0000000000000485CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104CrossRefGoogle Scholar
  5. 5.
    Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagège AA (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200CrossRefGoogle Scholar
  6. 6.
    Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113:810–834CrossRefGoogle Scholar
  7. 7.
    Fisher SA, Doree C, Mathur A, Martin-Rendon E (2015) Meta-analysis of cell therapy trials for patients with heart failure. Circ Res 116:1361–1377CrossRefGoogle Scholar
  8. 8.
    Chamuleau SA, Vrijsen KR, Rokosh DG, Tang XL, Piek JJ, Bolli R (2009) Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells. Neth Heart J 17:199–207CrossRefGoogle Scholar
  9. 9.
    Frati C, Savi M, Graiani G, Lagrasta C, Cavalli S, Prezioso L, Rossetti P, Mangiaracina C, Ferraro F, Madeddu D, Musso E, Stilli D, Rossini A, Falco A, Angelis AD, Rossi F, Urbanek K, Leri A, Kajstura J, Anversa P, Quaini E, Quaini F (2011) Resident cardiac stem cells. Curr Pharm Des 17:2074–2099CrossRefGoogle Scholar
  10. 10.
    Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109:941–961CrossRefGoogle Scholar
  11. 11.
    Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, Matsushita N, Blusztajn A, Terrovitis J, Kusuoka H, Marbán L, Marbán E (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953CrossRefGoogle Scholar
  12. 12.
    Nadal-Ginard B, Ellison GM, Torella D (2014) The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Res 13:615–630CrossRefGoogle Scholar
  13. 13.
    Savi M, Bocchi L, Rossi S, Frati C, Graiani G, Lagrasta C, Miragoli M, Di Pasquale E, Stirparo GG, Mastrototaro G, Urbanek K, De Angelis A, Macchi E, Stilli D, Quaini F, Musso E (2016) Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart. Am J Physiol Heart Circ Physiol 310(11):H1622–H1648.  https://doi.org/10.1152/ajpheart.00035.2015CrossRefPubMedGoogle Scholar
  14. 14.
    Leite CF, Almeida TR, Lopes CS, Dias da Silva VJ (2015) Multipotent stem cells of the heart—do they have therapeutic promise? Front Physiol 6:123.  https://doi.org/10.3389/fphys.2015.00123CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A, Biben C, Zoellner H, Colvin EK, Pimanda JE, Biankin AV, Zhou B, Pu WT, Prall OW, Harvey RP (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9:527–540.  https://doi.org/10.1016/j.stem.2011.10.002CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ryzhov S, Sung BH, Zhang Q, Weaver A, Gumina RJ, Biaggioni I, Feoktistov I (2014) Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation. Purinergic Signal 10:477–486.  https://doi.org/10.1007/s11302-014-9410-yCrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S, Musso E, Baccarin M, Di Segni M, Fagnoni F, Germani A, Quaini E, Mayr M, Xu Q, Barbuti A, Di Francesco D, Pompilio G, Quaini F, Gaetano C, Capogrossi MC (2011) Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 89(3):650–660.  https://doi.org/10.1093/cvr/cvq290CrossRefPubMedGoogle Scholar
  18. 18.
    Vecellio M, Meraviglia V, Nanni S, Barbuti A, Scavone A, DiFrancesco D, Farsetti A, Pompilio G, Colombo GI, Capogrossi MC, Gaetano C, Rossini A (2012) In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors. PLoS One 7:e51694.  https://doi.org/10.1371/journal.pone.0051694CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Terrovitis JV, Ruckdeschel Smith R, Marbàn E (2010) Assessment and optimization of cell engraftment after transplantation into the heart. Circ Res 106:479–494CrossRefGoogle Scholar
  20. 20.
    Giuliani A, Mencarelli M, Frati C, Savi M, Lagrasta C, Pompilio G, Rossini A, Quani F (2018) Phase-contrast microtomography: are the tracers necessary for stem cell tracking in infarcted hearts? Biomed. Phys Eng Express 4 055008CrossRefGoogle Scholar
  21. 21.
    Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S, Mastrogiacomo M, Peyrin F, Rustichelli F (2007) Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray micro-diffraction. Biomaterials 28:2505e24Google Scholar
  22. 22.
    Rominu M, Manescu A, Sinescu C, Negrutiu ML, Topala F, Rominu RO, Bradu A, Jackson DA, Giuliani A, Podoleanu AG (2014) Zirconia enriched dental adhesive: a solution for OCT contrast enhancement. Demonstrative study by synchrotron radiation microtomography. Dent Mater 30(4):417–423.  https://doi.org/10.1016/j.dental.2014.01.004CrossRefPubMedGoogle Scholar
  23. 23.
    Dullin C, Ufartes R, Larsson E, Martin S, Lazzarini M, Tromba G, Missbach-Guentner J, Pinkert-Leetsch D, Katschinski DM, Alves F (2017) μCT of ex-vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry. PLoS One 12(2):e0170597.  https://doi.org/10.1371/journal.pone.0170597CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Giuliani A, Frati C, Rossini A, Komlev VS, Lagrasta C, Savi M, Cavalli S, Gaetano C, Quaini F, Manescu A, Rustichelli F (2011) High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts. J Tissue Eng Regen Med 5(8):e168–e178.  https://doi.org/10.1002/term.409CrossRefPubMedGoogle Scholar
  25. 25.
    Giuliani A (2012) 3D visualization of transplanted stem cells in infarcted rat hearts by high-resolution X-ray microtomography. IL NUOVO CIMENTO C 35(5):157–167.  https://doi.org/10.1393/ncc/i2012-11318-2CrossRefGoogle Scholar
  26. 26.
    Kaneko Y, Shinohara G, Hoshino M, Morishita H, Morita K, Oshima Y, Takahashi M, Yagi N, Okita Y, Tsukube T (2017) Intact imaging of human heart structure using X-ray phase-contrast tomography. Pediatr Cardiol 38(2):390–393.  https://doi.org/10.1007/s00246-016-1527-zCrossRefPubMedGoogle Scholar
  27. 27.
    Arfelli F, Assante M, Bonvicini V, Bravin A, Cantatore G, Castelli E, Dalla Palma L, Di Michiel M, Longo R, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Tromba G, Vacchi A, Vallazza E, Zanconati F (1998) Low-dose phase contrast X-ray medical imaging. Phys Med Biol 43(10):2845–2852CrossRefGoogle Scholar
  28. 28.
    Stokking R, Zubal IG, Viergever MA (2003) Display of fused images: methods, interpretation, and diagnostic improvements. Semin Nucl Med 33:219–227CrossRefGoogle Scholar
  29. 29.
    Lang S, Zanette I, Dominietto M, Langer M, Rack A, Schulz G, Le Duc G, David C, Mohr J, Pfeiffer F, Müller B, Weitkamp T (2014) Experimental comparison of grating- and propagation-based x-ray phase tomography of soft tissue. J Appl Phys 116:154903.  https://doi.org/10.1063/1.4897225CrossRefGoogle Scholar
  30. 30.
    Izadifar M (2016) Development of nanoparticle rate-modulating and synchrotron phase contrast-based assessment techniques for cardiac tissue engineering. PhD thesis. University of Saskatchewan Saskatoon, Division of Biomedical Engineering, SaskatchewanGoogle Scholar
  31. 31.
    Gianella A, Guerrini U, Tilenni M, Sironi L, Milano G, Nobili E, Vaga S, Capogrossi MC, Tremoli E, Pesce M (2010) Magnetic resonance imaging of human endothelial progenitors reveals opposite effects on vascular and muscle regeneration into ischaemic tissues. Cardiovasc Res 85(3):503–513CrossRefGoogle Scholar
  32. 32.
    Albertini G, Giuliani A, Komlev V, Moroncini F, Pugnaloni A, Pennesi G, Belicchi M, Rubini C, Rustichelli F, Tasso R, Torrente Y (2009) Organization of extracellular matrix fibers within polyglycolic acid-polylactic acid scaffolds analyzed using X-ray synchrotron-radiation phase-contrast micro computed tomography. Tissue Eng C Methods 15:403–411CrossRefGoogle Scholar
  33. 33.
    Zehbe R, Haibel A, Schmidt F, Riesemeier H, Kirkpatrick CJ, Schubert H, Brochhausen C (2010) High resolution X-ray tomography – 3D imaging for tissue engineering applications. In: Eberli D (ed) Tissue engineering. InTech, Rijeka, pp 337–358Google Scholar
  34. 34.
    Giuliani A, Moroncini F, Mazzoni S, Belicchi ML, Villa C, Erratico S, Colombo E, Calcaterra F, Brambilla L, Torrente Y, Albertini G, Della Bella S (2014) Polyglycolic acid-polylactic acid scaffold response to different progenitor cell in vitro cultures: a demonstrative and comparative X-ray synchrotron radiation phase-contrast microtomography study. Tissue Eng Part C Methods 20:308–316CrossRefGoogle Scholar
  35. 35.
    İlsever M., Ünsalan C (2012) Pixel-Based Change Detection Methods. In: Two-Dimensional Change Detection Methods. SpringerBriefs in Computer Science. Springer, London, p 7–21CrossRefGoogle Scholar
  36. 36.
    Hirt MN, Hansen A, Eschenhagen T (2014) Cardiac tissue engineering. State of the art. Circ Res 114:354–367CrossRefGoogle Scholar
  37. 37.
    Rai R, Tallawi M, Barbani N, Frati C, Madeddu D, Cavalli S, Graiani G, Quaini F, Roether JA, Schubert DW, Rosellini E, Boccaccini AR (2013) Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater Sci Eng C Mater Biol Appl 33(7):3677–3687.  https://doi.org/10.1016/j.msec.2013.04.058CrossRefPubMedGoogle Scholar
  38. 38.
    Holbrook M, Clark DP, Badea CT (2018) Low-dose 4D cardiac imaging in small animals using dual source micro-CT. Phys Med Biol 63(2):025009CrossRefGoogle Scholar
  39. 39.
    Donath T, Pfeiffer F, Bunk O, Grünzweig C, Hempel E, Popescu S, Vock P, David C (2010) Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen. Investig Radiol 45:445–452Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Clinical SciencesPolytechnic University of MarcheAnconaItaly

Personalised recommendations