Advertisement

Human Immunodeficiency Virus-Related Lymphomas

  • Josep-Maria RiberaEmail author
  • Richard F. Little
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

The acquired immunodeficiency syndrome (AIDS) was first described in 1981, in individuals with certain opportunistic infections (OI), Kaposi sarcoma, and central nervous system (CNS) lymphomas. Three years later the clinical spectrum of non-Hodgkin lymphomas (NHL) in the populations at risk of AIDS was first described [1, 2]. Since the introduction of combined antiretroviral therapy (cART) in the mid-1990s, the incidence of lymphomas, which formerly accounted for 2–3% of newly diagnosed AIDS patients, has decreased and outcomes have improved [3]. Simultaneously, a shift toward histologies that occur at higher CD4 lymphocyte counts, such as Burkitt lymphoma and classical Hodgkin lymphoma (cHL), was observed [4–6]. The increasing proportion of long-term survivors of lymphoma has raised the possibility of developing certain non-AIDS-defining solid tumors, especially those related to the lifestyle and viral infections in HIV-infected patients.

Notes

Acknowledgments

Funded in part by grants PI10/01417 (FIS), RD12-0036-0029 from RTICC, Instituto Carlos III and RD14-SGR225(GRE), Generalitat de Catalunya.

References

  1. 1.
    Ziegler JL, Beckstead JA, Volberding PA, et al. Non-Hodgkin’s lymphoma in 90 homosexual men. Relation to generalized lymphadenopathy and the acquired immunodeficiency syndrome. N Engl J Med. 1984;311:565–70.CrossRefGoogle Scholar
  2. 2.
    Rabkin CS, Yellin F. Cancer incidence in a population with a high prevalence of infection with human immunodeficiency virus type 1. J Natl Cancer Inst. 1994;86:1711–6.CrossRefGoogle Scholar
  3. 3.
    Dunleavy K, Wilson WH. How I treat HIV-associated lymphoma. Blood. 2012;119:3245–55.CrossRefGoogle Scholar
  4. 4.
    Little RF, Wilson WH. Update on the pathogenesis, diagnosis, and therapy of AIDS-related lymphoma. Curr Infect Dis Rep. 2003;5:176–84.CrossRefGoogle Scholar
  5. 5.
    Carbone A, Gloghini A. AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol. 2005;130:662–70.CrossRefGoogle Scholar
  6. 6.
    Gopal S, Patel MR, Yanik EL, et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natl Cancer Inst. 2013;105:1221–9.CrossRefGoogle Scholar
  7. 7.
    Ingle SM, May MT, Gill MJ, et al. Impact of risk factors for specific causes of death in the first and subsequent years of antiretroviral therapy among HIV-infected patients. Clin Infect Dis. 2014;59:287–97.CrossRefGoogle Scholar
  8. 8.
    Besson C, Goubar A, Gabarre J, et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood. 2001;98:2339–44.CrossRefGoogle Scholar
  9. 9.
    Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980-2002. AIDS. 2006;20:1645–54.CrossRefGoogle Scholar
  10. 10.
    Hernandez-Ramirez RU, Shiels MS, Dubrow R, Engels EA. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV. 2017;4:e495.  https://doi.org/10.1016/S2352-3018(17)30125-X.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gotti D, Danesi M, Calabresi A, et al. Clinical characteristics, incidence, and risk factors of HIV-related Hodgkin lymphoma in the era of combination antiretroviral therapy. AIDS Patient Care STDs. 2013;27:259–65.CrossRefGoogle Scholar
  12. 12.
    Shiels MS, Koritzinsky EH, Clarke CA, Suneja G, Morton LM, Engels EA. Prevalence of HIV infection among U.S. Hodgkin lymphoma cases. Cancer Epidemiol Biomark Prev. 2014;23:274–81.CrossRefGoogle Scholar
  13. 13.
    Lee JY, Dhakal I, Casper C, et al. Risk of cancer among commercially insured HIV-infected adults on antiretroviral therapy. J Cancer Epidemiol. 2016;2016:2138259.CrossRefGoogle Scholar
  14. 14.
    Serraino D, Dal Maso L. Epidemiology. In: Henrich M, Barta SK, editors. HIV-associated hematological malignancies. New York: Springer; 2016. p. 27–38.CrossRefGoogle Scholar
  15. 15.
    Carbone A, Volpi CC, Gualeni AV, Gloghini A. Epstein-Barr virus associated lymphomas in people with HIV. Curr Opin HIV AIDS. 2017;12:39–46.CrossRefGoogle Scholar
  16. 16.
    Carbone A, Gloghini A, Caruso A, De Paoli P, Dolcetti R. The impact of EBV and HIV infection on the microenvironmental niche underlying Hodgkin lymphoma pathogenesis. Int J Cancer. 2017;140:1233–45.CrossRefGoogle Scholar
  17. 17.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body cavity-based lymphomas. N Engl J Med. 1995;332:1186–91.CrossRefGoogle Scholar
  18. 18.
    Arora N, Gupta A, Sadeghi N. Primary effusion lymphoma: current concepts and management. Curr Opin Pulm Med. 2017;23:365–70.CrossRefGoogle Scholar
  19. 19.
    Auten M, Kim AS, Bradley KT, Rosado FG. Human herpesvirus 8-related diseases: histopathologic diagnosis and disease mechanisms. Semin Diagn Pathol. 2017;34:371–6.CrossRefGoogle Scholar
  20. 20.
    Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.CrossRefGoogle Scholar
  21. 21.
    Linke-Serinsöz E, Fend F, Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point. Semin Diagn Pathol. 2017;34:352–63.CrossRefGoogle Scholar
  22. 22.
    Dunleavy K, Little RF, Pittaluga S, et al. The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma. Blood. 2010;115:3017–24.CrossRefGoogle Scholar
  23. 23.
    Xicoy B, Ribera J-M, Mate J-L, et al. Immunohistochemical expression profile and prognosis in patients with diffuse large B-cell lymphoma with or without human immunodeficiency virus infection. Leuk Lymphoma. 2010;51:2063–9.CrossRefGoogle Scholar
  24. 24.
    Yoon N, Ahn S, Yong Yoo H, et al. Cell-of-origin of diffuse large B-cell lymphomas determined by the Lymph2Cx assay: better prognostic indicator than Hans algorithm. Oncotarget. 2017;8:22014–22.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dunleavy K, Little RF, Wilson WH. Update on Burkitt lymphoma. Hematol Oncol Clin North Am. 2016;30:1333–43.CrossRefGoogle Scholar
  26. 26.
    Staiger AM, Ziepert M, Horn H, et al. Clinical impact of the cell-of-origin classification and the MYC/BCL2 dual expresser status in diffuse large B-cell lymphoma treated within prospective clinical trials of the German high-grade non-Hodgkin’s lymphoma study group. J Clin Oncol. 2017;35(22):2515–26.CrossRefGoogle Scholar
  27. 27.
    Cinque P, Brytting M, Vago L, et al. Epstein-Barr virus DNA in cerebrospinal fluid from patients with AIDS-related primary lymphoma of the central nervous system. Lancet. 1993;342:398–401.CrossRefGoogle Scholar
  28. 28.
    Karia SJ, McArdle DJT. AIDS-related primary CNS lymphoma. Lancet. 2017;389(10085):2238.  https://doi.org/10.1016/S0140-6736(17)30056-9.CrossRefPubMedGoogle Scholar
  29. 29.
    El-Fattah MA. Clinical characteristics and survival outcome of primary effusion lymphoma: a review of 105 patients. Hematol Oncol. 2016;35:878.  https://doi.org/10.1002/hon.2372.CrossRefPubMedGoogle Scholar
  30. 30.
    Gonzalez-Farre B, Martinez D, Lopez-Guerra M, et al. HHV8-related lymphoid proliferations: a broad spectrum of lesions from reactive lymphoid hyperplasia to overt lymphoma. Mod Pathol. 2017;30:745–60.CrossRefGoogle Scholar
  31. 31.
    Hentrich M, Spina M, Montoto S. HIV-associated Hodgkin’s lymphoma. In: Henrich M, Barta SK, editors. HIV-associated hematological malignancies. New York: Springer; 2016. p. 119–32.CrossRefGoogle Scholar
  32. 32.
    Brunnberg U, Hentrich M, Hoffmann C, Wolf T, Hübel K. HIV-associated malignant lymphoma. Oncol Res Treat. 2017;40:82–7.CrossRefGoogle Scholar
  33. 33.
    Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.CrossRefGoogle Scholar
  34. 34.
    Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128:2489–96.CrossRefGoogle Scholar
  35. 35.
    Barta SK, Samuel MS, Xue X, et al. Changes in the influence of lymphoma- and HIV-specific factors on outcomes in AIDS-related non-Hodgkin lymphoma. Ann Oncol. 2015;26:958–66.CrossRefGoogle Scholar
  36. 36.
    International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329:987–94.CrossRefGoogle Scholar
  37. 37.
    Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med. 1998;339:1506–14.CrossRefGoogle Scholar
  38. 38.
    Xicoy B, Ribera JM, Miralles P, et al. Limited prognostic value of the international prognostic score in advanced stage human immunodeficiency virus infection-related Hodgkin lymphoma treated with the doxorubicin, bleomycin, vinblastine, and dacarbazine regimen. Leuk Lymphoma. 2009;50:1718–20.CrossRefGoogle Scholar
  39. 39.
    Barta SK, Xue X, Wang D, et al. A new prognostic score for AIDS-related lymphomas in the rituximab-era. Haematologica. 2014;99:1731–7.CrossRefGoogle Scholar
  40. 40.
    Castillo JJ, Bower M, Brühlmann J, et al. HIV-associated Hodgkin lymphoma in the cART Era Study Group. Prognostic factors for advanced-stage human immunodeficiency virus-associated classical Hodgkin lymphoma treated with doxorubicin, bleomycin, vinblastine, and dacarbazine plus combined antiretroviral therapy: a multi-institutional retrospective study. Cancer. 2015;121:423–31.CrossRefGoogle Scholar
  41. 41.
    Wang CC, Kaplan LD. Clinical management of HIV-associated hematologic malignancies. Expert Rev Hematol. 2016;9:361–76.CrossRefGoogle Scholar
  42. 42.
    Ribera JM, Oriol A, Morgades M, et al. Safety and efficacy of cyclophosphamide, adriamycin, vincristine, prednisone and rituximab in patients with human immunodeficiency virus-associated diffuse large B-cell lymphoma: results of a phase II trial. Br J Haematol. 2008;140:411–9.CrossRefGoogle Scholar
  43. 43.
    Spina M, Jaeger U, Sparano JA, et al. Rituximab plus infusional cyclophosphamide, doxorubicin, and etoposide in HIV-associated non-Hodgkin lymphoma: pooled results from 3 phase 2 trials. Blood. 2005;105:1891–7.CrossRefGoogle Scholar
  44. 44.
    Sparano JA, Lee JY, Kaplan LD, et al. Rituximab plus concurrent infusional EPOCH chemotherapy is highly effective in HIV-associated B-cell non-Hodgkin lymphoma. Blood. 2010;115:3008–16.CrossRefGoogle Scholar
  45. 45.
    Kaplan LD, Lee JY, Ambinder RF, et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood. 2005;106:1538–43.CrossRefGoogle Scholar
  46. 46.
    Barta SK, Xue X, Wang D, et al. Treatment factors affecting outcomes in HIV-associated non-Hodgkin lymphomas: a pooled analysis of 1546 patients. Blood. 2013;122:3251–62.CrossRefGoogle Scholar
  47. 47.
    Barta SK, Lee JY, Kaplan LD, Noy A, Sparano JA. Pooled analysis of AIDS malignancy consortium trials evaluating rituximab plus CHOP or infusional EPOCH chemotherapy in HIV-associated non-Hodgkin lymphoma. Cancer. 2012;118:3977–83.CrossRefGoogle Scholar
  48. 48.
    Wilson WH, Ho JS, Pitcher BN, et al. Phase III randomized study of R-CHOP versus DA-EPOCH-R and molecular analysis of untreated diffuse large B-cell lymphoma: CALGB/Alliance 50303. Blood. 2016;128:469; [abstract].Google Scholar
  49. 49.
    Uldrick T, et al. AIDS-associated Primary Central Nervous System Lymphoma (AIDS-PCNSL) treated with HAART and radiation-sparing therapy: The NCI HIV and AIDS Malignancy Branch experience, 2004-2011. CROI 19, 2012: Abstract R-129.Google Scholar
  50. 50.
    Borges ÁH, Neuhaus J, Babiker AG, et al. Immediate antiretroviral therapy reduces risk of infection-related cancer during early HIV infection. Clin Infect Dis. 2016;63:1668–76.CrossRefGoogle Scholar
  51. 51.
    Ribera JM, Garcia O, Grande C, et al. Dose-intensive chemotherapy including rituximab in Burkitt’s leukemia or lymphoma regardless of human immunodeficiency virus infection status: final results of a phase 2 study (Burkimab). Cancer. 2013;119:1660–8.CrossRefGoogle Scholar
  52. 52.
    Noy A, Lee JY, Cesarman E, et al. AMC 048: modified CODOX-M/IVAC-rituximab is safe and effective for HIV-associated Burkitt lymphoma. Blood. 2015;126:160–6.CrossRefGoogle Scholar
  53. 53.
    Alwan F, He A, Montoto S, et al. Adding rituximab to CODOX-M/IVAC chemotherapy in the treatment of HIV-associated Burkitt lymphoma is safe when used with concurrent combination antiretroviral therapy. AIDS. 2015;29:903–10.CrossRefGoogle Scholar
  54. 54.
    Xicoy B, Ribera JM, Müller M, et al. Dose-intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients. Leuk Lymphoma. 2014;55:2341–8.CrossRefGoogle Scholar
  55. 55.
    Dunleavy K, Pittaluga S, Shovlin M, et al. Low-intensity therapy in adults with Burkitt’s lymphoma. N Engl J Med. 2013;369:1915–25.CrossRefGoogle Scholar
  56. 56.
    Dunleavy K, Noy A, Abramson JS, et al. Risk-adapted therapy in adults with Burkitt lymphoma: preliminary report of a multicenter prospective phase II study of DA-EPOCH-R. Blood. 2015;126:342; [abstract].Google Scholar
  57. 57.
    Dunleavy K. Aggressive B cell lymphoma: optimal therapy for MYC-positive, double-hit, and triple-hit DLBCL. Curr Treat Options in Oncol. 2015;16:58.CrossRefGoogle Scholar
  58. 58.
    Castillo JJ, Reagan JL, Sikov WM, Winer ES. Bortezomib in combination with infusional dose-adjusted EPOCH for the treatment of plasmablastic lymphoma. Br J Haematol. 2015;169:352–5.CrossRefGoogle Scholar
  59. 59.
    Castillo JJ, Bibas M, Miranda RN. The biology and treatment of plasmablastic lymphoma. Blood. 2015;125:2323–30.CrossRefGoogle Scholar
  60. 60.
    Barta SK, Joshi J, Mounier N, et al. Central nervous system involvement in AIDS-related lymphomas. Br J Haematol. 2016;173:857–66.CrossRefGoogle Scholar
  61. 61.
    Gupta NK, Nolan A, Omuro A, et al. Long-term survival in AIDS-related primary central nervous system lymphoma. Neuro-Oncology. 2017;19:99–108.CrossRefGoogle Scholar
  62. 62.
    Xicoy B, Ribera JM, Miralles P, et al. Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin’s lymphoma. Haematologica. 2007;92:191–8.CrossRefGoogle Scholar
  63. 63.
    Montoto S, Shaw K, Okosun J, et al. HIV status does not influence outcome in patients with classical Hodgkin lymphoma treated with chemotherapy using doxorubicin, bleomycin, vinblastine, and dacarbazine in the highly active antiretroviral therapy era. J Clin Oncol. 2012;30:4111–6.CrossRefGoogle Scholar
  64. 64.
    Sorigué M, García O, Tapia G, et al. HIV-infection has no prognostic impact on advanced-stage Hodgkin lymphoma. AIDS. 2017;31:1445–9.CrossRefGoogle Scholar
  65. 65.
    Hentrich M, Berger M, Wyen C, et al. Stage-adapted treatment of HIV-associated Hodgkin lymphoma: results of a prospective multicenter study. J Clin Oncol. 2012;30:4117–23.CrossRefGoogle Scholar
  66. 66.
    Okosun J, Warbey V, Shaw K, et al. Interim fluoro-2-deoxy-D-glucose-PET predicts response and progression-free survival in patients with Hodgkin lymphoma and HIV infection. AIDS. 2012;26:861–5.CrossRefGoogle Scholar
  67. 67.
    Danilov AV, Li H, Press OW, et al. Feasibility of interim PET-adapted therapy in HIV-positive patients with advanced Hodgkin lymphoma (HL): sub-analysis of SWOG S0816 phase 2 trial. Blood. 2015;126:1498; [abstract].Google Scholar
  68. 68.
    Pres OW, Li H, Schöder H, et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose–positron emission tomography imaging: Southwest Oncology Group S0816. J Clin Oncol. 2016;34:2020–7.CrossRefGoogle Scholar
  69. 69.
    Ezzat HM, Cheung MC, Hicks LK, et al. Incidence, predictors and significance of severe toxicity in patients with human immunodeficiency virus-associated Hodgkin lymphoma. Leuk Lymphoma. 2012;53:2390–6.CrossRefGoogle Scholar
  70. 70.
    Gerard L, Michot JM, Burcheri S, et al. Rituximab decreases the risk of lymphoma in patients with HIV-associated multicentric Castleman disease. Blood. 2012;119:2228–33.CrossRefGoogle Scholar
  71. 71.
    Diez-Martin JL, Balsalobre P, Re A, et al. Comparable survival between HIV+ and HIV− non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation. Blood. 2009;113:6011–4.CrossRefGoogle Scholar
  72. 72.
    Balsalobre P, Diez-Martin JL, Re A, et al. Autologous stem-cell transplantation in patients with HIV-related lymphoma. J Clin Oncol. 2009;27:2192–8.CrossRefGoogle Scholar
  73. 73.
    Johnston C, Harrington R, Jain R, Schiffer J, Kiem HP, Woolfrey A. Safety and efficacy of combination antiretroviral therapy in human immunodeficiency virus-infected adults undergoing autologous or allogeneic hematopoietic cell transplantation for hematologic malignancies. Biol Blood Marrow Transplant. 2016;22:149–56.CrossRefGoogle Scholar
  74. 74.
    Alvarnas JC, Le Rademacher J, Wang Y, et al. Autologous hematopoietic cell transplantation for HIV-related lymphoma: results of the (BMT CTN) 0803/(AMC) 071 trial. Blood. 2016;128:1050–8.CrossRefGoogle Scholar
  75. 75.
    Re A, Cattaneo C, Skert C, et al. Cooperative European Group on AIDS and Tumors. Stem cell mobilization in HIV seropositive patients with lymphoma. Haematologica. 2013;98:1762–8.CrossRefGoogle Scholar
  76. 76.
    Re A, Krishnan A, Hentrich M, et al. Autologous stem cell transplantation. In: Henrich M, Barta SK, editors. HIV-associated hematological malignancies. New York: Springer; 2016. p. 153–64.CrossRefGoogle Scholar
  77. 77.
    Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.CrossRefGoogle Scholar
  78. 78.
    Ambinder RF, Kanakry JA, Durand C. Allogeneic stem cell transplantation. In: Henrich M, Barta SK, editors. HIV-associated hematological malignancies. New York: Springer; 2016. p. 165–72.CrossRefGoogle Scholar
  79. 79.
    Rudek MA, Flexner C, Ambinder RF. Use of antineoplastic agents in patients with cancer who have HIV/AIDS. Lancet Oncol. 2011;12:905–12.CrossRefGoogle Scholar
  80. 80.
    Torres HA, Rallapalli V, Saxena A, et al. Efficacy and safety of antiretrovirals in HIV-infected patients with cancer. Clin Microbiol Infect. 2014;20:O672–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Clinical Hematology DepartmentICO-Hospital Germans Trias i Pujol, Jose Carreras Research Institute, Badalona, Universitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Clinical Investigations Branch, Cancer Therapy Evaluation ProgramNational Cancer InstituteBethesdaUSA

Personalised recommendations