Advertisement

Aggressive Lymphoma in Children and Adolescents

  • Birte Wistinghausen
  • Birgit Burkhardt
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Non-Hodgkin lymphomas (NHL) account for 7% of childhood malignancies between the ages of 0 and 19 according to SEERS data from 2010 to 2014. NHL are rare in early childhood with an incidence of 7.3/106 children/year in the 1–4-year age group. By adolescence, the annual incidence rises with 14/106 children in the 10–14-year age range and 18.3/106 children in the 15–19-year age group. In addition, lymphoblastic leukemia accounts for another 20% of childhood cancers making malignancies of lymphatic origin the largest group of childhood cancers.

References

  1. 1.
    Reiter A. Diagnosis and treatment of childhood non-hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2007;2007:285–96.CrossRefGoogle Scholar
  2. 2.
    Burkhardt B, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Worch J, Rohde M, Burkhardt B. Mature B-cell lymphoma and leukemia in children and adolescents—review of standard chemotherapy regimen and perspectives. Pediatr Hematol Oncol. 2013;30(6):465–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Lange J, Burkhardt B. Treatment of adolescents with aggressive B-cell malignancies: the pediatric experience. Curr Hematol Malig Rep. 2013;8(3):226–35.PubMedCrossRefGoogle Scholar
  5. 5.
    Sandlund JT, Downing JR, Crist WM. Non-Hodgkin’s lymphoma in childhood. N Engl J Med. 1996;334(19):1238–48.PubMedCrossRefGoogle Scholar
  6. 6.
    Burkhardt B, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25(1):153–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Salzburg J, et al. Prevalence, clinical pattern, and outcome of CNS involvement in childhood and adolescent non-Hodgkin’s lymphoma differ by non-Hodgkin’s lymphoma subtype: a Berlin-Frankfurt-Munster Group report. J Clin Oncol. 2007;25(25):3915–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Cairo MS, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (>/= 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Abla O, et al. Primary CNS lymphoma in children and adolescents: a descriptive analysis from the International Primary CNS Lymphoma Collaborative Group (IPCG). Clin Cancer Res. 2011;17(2):346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Thorer H, et al. Primary central nervous system lymphoma in children and adolescents: low relapse rate after treatment according to Non-Hodgkin-Lymphoma Berlin-Frankfurt-Munster protocols for systemic lymphoma. Haematologica. 2014;99(11):e238–41.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Swerdlow SH, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissue. World Health Organization classification of tumours. Lyon: IARC; 2008.Google Scholar
  12. 12.
    Swerdlow SH, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89(11):3909–18.Google Scholar
  14. 14.
    Hummel M, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–30.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Dave SS, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354(23):2431–42.CrossRefGoogle Scholar
  16. 16.
    Mbulaiteye SM, et al. Pediatric, elderly, and emerging adult-onset peaks in Burkitt’s lymphoma incidence diagnosed in four continents, excluding Africa. Am J Hematol. 2012;87(6):573–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Boerma EG, et al. Gender and age-related differences in Burkitt lymphoma—epidemiological and clinical data from The Netherlands. Eur J Cancer. 2004;40(18):2781–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Molyneux EM, et al. Burkitt’s lymphoma. Lancet. 2012;379(9822):1234–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Schmitz R, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116–20.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Richter J, et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet. 2012;44(12):1316–20.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Love C, et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44(12):1321–5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Campo E. New pathogenic mechanisms in Burkitt lymphoma. Nat Genet. 2012;44(12):1288–9.CrossRefGoogle Scholar
  23. 23.
    Rohde M, et al. Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the non-Hodgkin Lymphoma Berlin-Frankfurt-Munster protocols. Haematologica. 2017;102(6):1091–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rosenwald A, Staudt LM. Gene expression profiling of diffuse large B-cell lymphoma. Leuk Lymphoma. 2003;44(Suppl 3):S41–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rosenwald A, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.CrossRefGoogle Scholar
  27. 27.
    Hans CP, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82.CrossRefGoogle Scholar
  28. 28.
    Choi WW, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15(17):5494–502.CrossRefGoogle Scholar
  29. 29.
    Oschlies I, et al. Diffuse large B-cell lymphoma in pediatric patients belongs predominantly to the germinal-center type B-cell lymphomas: a clinicopathologic analysis of cases included in the German BFM (Berlin-Frankfurt-Munster) Multicenter Trial. Blood. 2006;107(10):4047–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Szczepanowski M, et al. Cell-of-origin classification by gene expression and MYC-rearrangements in diffuse large B-cell lymphoma of children and adolescents. Br J Haematol. 2017;179(1):116–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Salaverria I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Miles RR, et al. Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: report of the French-American-British (FAB) international study group. Pediatr Blood Cancer. 2008;51(3):369–74.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Murphy SB. Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol. 1980;7(3):332–9.PubMedGoogle Scholar
  34. 34.
    Rosolen A, et al. Revised international pediatric non-Hodgkin lymphoma staging system. J Clin Oncol. 2015;33(18):2112–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Woessmann W, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Reiter A, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 1999;94(10):3294–306.Google Scholar
  37. 37.
    Fujita N, et al. Results of the Japan Association of Childhood Leukemia Study (JACLS) NHL-98 protocol for the treatment of B-cell non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia in childhood. Leuk Lymphoma. 2011;52(2):223–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Patte C, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9.CrossRefGoogle Scholar
  39. 39.
    Patte C, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Cairo MS, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109(7):2736–43.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pillon M, et al. Long-term results of the first Italian Association of Pediatric Hematology and Oncology protocol for the treatment of pediatric B-cell non-Hodgkin lymphoma (AIEOP LNH92). Cancer. 2004;101(2):385–94.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329(14):987–94.Google Scholar
  43. 43.
    Gerrard M, et al. Excellent survival following two courses of COPAD chemotherapy in children and adolescents with resected localized B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Br J Haematol. 2008;141(6):840–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kikuchi A, et al. Outcome of childhood B-cell non-Hodgkin lymphoma and B-cell acute lymphoblastic leukemia treated with the Tokyo Children’s Cancer Study Group NHL B9604 protocol. Leuk Lymphoma. 2008;49(4):757–62.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jourdain A, et al. Outcome of and prognostic factors for relapse in children and adolescents with mature B-cell lymphoma and leukemia treated in three consecutive prospective “Lymphomes Malins B” protocols. A Societe Francaise des Cancers de l’Enfant study. Haematologica. 2015;100(6):810–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Anoop P, et al. Outcome of childhood relapsed or refractory mature B-cell non-Hodgkin lymphoma and acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(10):1882–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Gross TG, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-Hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transplant. 2010;16(2):223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Fujita N, et al. The role of hematopoietic stem cell transplantation with relapsed or primary refractory childhood B-cell non-Hodgkin lymphoma and mature B-cell leukemia: a retrospective analysis of enrolled cases in Japan. Pediatr Blood Cancer. 2008;51(2):188–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Woessmann W, Reiter A. Re-induction approaches to relapsed/refractory childhood and adolescent non Hodgkin¢s lymphoma: BFM perspective. Br J Haematol. 2012;159(Suppl. 1):Abstract 71.Google Scholar
  50. 50.
    Griffin TC, et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;52(2):177–81.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Samochatova EV, et al. Therapy of advanced-stage mature B-cell lymphoma and leukemia in children and adolescents with rituximab and reduced intensity induction chemotherapy (B-NHL 2004M protocol): the results of a multicenter study. J Pediatr Hematol Oncol. 2014;36(5):395–401.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Meinhardt A, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol. 2010;28(19):3115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lisfeld J, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia: dose-escalation does not increase the response rate. Br J Haematol. 2012;112(Suppl. 2012):Abstract 6.Google Scholar
  54. 54.
    Cairo M, et al. Safety, kinetics, and outcome following rituximab (R) in combination with FAB chemotherapy in children and adolescents (C+A) with stage III/IV (Group B) and BM+/CNS+ (Group C) mature B-NHL: a Children’s Oncology Group report. JCO. 2010;28(15s):9536.CrossRefGoogle Scholar
  55. 55.
    Frazer K, et al. Efficacy of rituximab plus FAB group C chemotherapy without CNS radiation in CNS-positive pediatric Burkitt lymphoma/leukemia: a report from the Children’s Oncology Group. JCO. 2012;30(15_suppl):9501.Google Scholar
  56. 56.
    Goldman S, et al. Preliminary results of the addition of Rasburicase to the reduction cycle and rituximab to the induction and consolidation cycles of FAB Group C Chemotherapy in Children and Adolescents with Advanced Stage (Bone Marrow ±CNS) Mature B-Cell Non-Hodgkin Lymphoma (B-NHL): a Children’s Oncology Group report. Blood. 2009;114:104.CrossRefGoogle Scholar
  57. 57.
    Goldman S, et al. The efficacy of rasburicase and rituximab combined with FAB chemotherapy in children and adolescents with newly diagnosed stage III/IV, BM+ and CNS+ Mature B-NHL: a Children’s Oncology Group Report. Blood. 2011;118:2702.CrossRefGoogle Scholar
  58. 58.
    Goldman S, et al. Rituximab with chemotherapy in children and adolescents with central nervous system and/or bone marrow-positive Burkitt lymphoma/leukaemia: a Children’s Oncology Group Report. Br J Haematol. 2014;167(3):394–401.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Goldman S, et al. Rituximab and FAB/LMB 96 chemotherapy in children with Stage III/IV B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Leukemia. 2013;27(5):1174–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Barth MJ, et al. Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a Children’s Oncology Group report. Br J Haematol. 2013;162(5):678–83.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Worch J, Makarova O, Burkhardt B. Immunreconstitution and infectious complications after rituximab treatment in children and adolescents: what do we know and what can we learn from adults? Cancers (Basel). 2015;7(1):305–28.CrossRefGoogle Scholar
  62. 62.
    Schmidt E, Burkhardt B. Lymphoblastic lymphoma in childhood and adolescence. Pediatr Hematol Oncol. 2013;30(6):484–508.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Oschlies I, et al. Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica. 2011;96(2):262–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ducassou S, et al. Clinical presentation, evolution, and prognosis of precursor B-cell lymphoblastic lymphoma in trials LMT96, EORTC 58881, and EORTC 58951. Br J Haematol. 2011;152(4):441–51.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Neth O, et al. Precursor B-cell lymphoblastic lymphoma in childhood and adolescence: clinical features, treatment, and results in trials NHL-BFM 86 and 90. Med Pediatr Oncol. 2000;35(1):20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bene MC, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Oschlies I, et al. Diagnosis and immunophenotype of 188 pediatric lymphoblastic lymphomas treated within a randomized prospective trial: experiences and preliminary recommendations from the European childhood lymphoma pathology panel. Am J Surg Pathol. 2011;35(6):836–44.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Patel JL, et al. The immunophenotype of T-lymphoblastic lymphoma in children and adolescents: a Children’s Oncology Group report. Br J Haematol. 2012;159(4):454–61.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Smock KJ, et al. Characterization of childhood precursor T-lymphoblastic lymphoma by immunophenotyping and fluorescent in situ hybridization: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51(4):489–94.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Coustan-Smith E, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    You MJ, Medeiros LJ, Hsi ED. T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol. 2015;144(3):411–22.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Haydu JE, Ferrando AA. Early T-cell precursor acute lymphoblastic leukaemia. Curr Opin Hematol. 2013;20(4):369–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Patrick K, et al. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166(3):421–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Burkhardt B, et al. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol. 2016;173(4):545–59.PubMedCrossRefGoogle Scholar
  75. 75.
    Tubergen DG, et al. Comparison of treatment regimens for pediatric lymphoblastic non-Hodgkin’s lymphoma: a Childrens Cancer Group study. J Clin Oncol. 1995;13(6):1368–76.PubMedCrossRefGoogle Scholar
  76. 76.
    Abromowitch M, et al. High-dose methotrexate and early intensification of therapy do not improve 3 year EFS in children and adolescents with disseminated lymphoblastic lymphoma. Results of the randomized arms of COG A5971. Blood. 2008;112:3610.Google Scholar
  77. 77.
    Uyttebroeck A, et al. Treatment of childhood T-cell lymphoblastic lymphoma according to the strategy for acute lymphoblastic leukaemia, without radiotherapy: long term results of the EORTC CLG 58881 trial. Eur J Cancer. 2008;44(6):840–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Reiter A, et al. Results of the European intergroup trial EURO-LB02 on lymphoblastic lymphoma (LBL) in children/adolescents. Br J Haematol. 2012;159(Suppl. 1):38.Google Scholar
  79. 79.
    Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149(5):653–68.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Basso K, et al. T-cell lymphoblastic lymphoma shows differences and similarities with T-cell acute lymphoblastic leukemia by genomic and gene expression analyses. Genes Chromosomes Cancer. 2011;50(12):1063–75.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Uyttebroeck A, et al. Is there a difference in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leuk Lymphoma. 2007;48(9):1745–54.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Burkhardt B, et al. Loss of heterozygosity on chromosome 6q14-q24 is associated with poor outcome in children and adolescents with T-cell lymphoblastic lymphoma. Leukemia. 2006;20(8):1422–9.CrossRefGoogle Scholar
  83. 83.
    Lones MA, et al. Chromosome abnormalities in advanced stage lymphoblastic lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2007;172(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Breit S, et al. Activating NOTCH1 mutations predict favorable early treatment response and long term outcome in child-hood precursor T-cell lymphoblastic leukemia. Blood. 2006;108(4):1151–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Kox C, et al. The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-ALL patients treated on the ALL-BFM 2000 protocol can be separated from FBXW7 loss of function. Leukemia. 2010;24(12):2005–13.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bonn BR, et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood. 2013;121(16):3153–60.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Callens C, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30(16):1966–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Park MJ, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145(2):198–206.PubMedCrossRefGoogle Scholar
  89. 89.
    Baleydier F, et al. T cell receptor genotyping and HOXA/TLX1 expression define three T lymphoblastic lymphoma subsets which might affect clinical outcome. Clin Cancer Res. 2008;14(3):692–700.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Burkhardt B, et al. Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma. 2008;49(3):451–61.PubMedCrossRefGoogle Scholar
  91. 91.
    Balbach ST, et al. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia. 2016;30(4):970–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96.PubMedCrossRefGoogle Scholar
  93. 93.
    Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal. 2014;26(1):149–61.PubMedCrossRefGoogle Scholar
  94. 94.
    Bandapalli OR, et al. NOTCH1 activation clinically antagonizes the unfavorable effect of PTEN inactivation in BFM-treated children with precursor T-cell acute lymphoblastic leukemia. Haematologica. 2013;98(6):928–36.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zuurbier L, et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia. 2010;24(12):2014–22.PubMedCrossRefGoogle Scholar
  96. 96.
    Gutierrez A, et al. Absence of biallelic TCRgamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3816–23.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yang YL, et al. Absence of biallelic TCRgamma deletion predicts induction failure and poorer outcomes in childhood T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 2012;58(6):846–51.PubMedCrossRefGoogle Scholar
  98. 98.
    Stark B, et al. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Pediatr Blood Cancer. 2009;52(1):20–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Coustan-Smith E, et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the Children’s Oncology Group. J Clin Oncol. 2009;27(21):3533–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mussolin L, et al. Detection and role of minimal disseminated disease in children with lymphoblastic lymphoma: the AIEOP experience. Pediatr Blood Cancer. 2015;62(11):1906–13.PubMedCrossRefGoogle Scholar
  101. 101.
    Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Roman-Gomez J, et al. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma. 2007;48(7):1269–82.PubMedCrossRefGoogle Scholar
  103. 103.
    Bardi E, et al. Value of FDG-PET/CT examinations in different cancers of children, focusing on lymphomas. Pathol Oncol Res. 2014;20(1):139–43.PubMedCrossRefGoogle Scholar
  104. 104.
    Nakatani K, et al. Roles and limitations of FDG PET in pediatric non-Hodgkin lymphoma. Clin Nucl Med. 2012;37(7):656–62.PubMedCrossRefGoogle Scholar
  105. 105.
    Riad R, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(2):319–29.PubMedCrossRefGoogle Scholar
  106. 106.
    Riad R, et al. False-positive F-18 FDG uptake in PET/CT studies in pediatric patients with abdominal Burkitt’s lymphoma. Nucl Med Commun. 2010;31(3):232–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Sioka C. The utility of FDG PET in diagnosis and follow-up of lymphoma in childhood. Eur J Pediatr. 2013;172(6):733–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Patte C, et al. Results of the LMT81 protocol, a modified LSA2L2 protocol with high dose methotrexate, on 84 children with non-B-cell (lymphoblastic) lymphoma. Med Pediatr Oncol. 1992;20(2):105–13.PubMedCrossRefGoogle Scholar
  109. 109.
    Amylon MD, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia. 1999;13(3):335–42.PubMedCrossRefGoogle Scholar
  110. 110.
    Reiter A, et al. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood. 2000;95(2):416–21.PubMedGoogle Scholar
  111. 111.
    Burkhardt B, et al. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006;24(3):491–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Abromowitch M, et al. Shortened intensified multi-agent chemotherapy and non-cross resistant maintenance therapy for advanced lymphoblastic lymphoma in children and adolescents: report from the Children’s Oncology Group. Br J Haematol. 2008;143(2):261–7.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pillon M, et al. Long-term results of AIEOP LNH-92 protocol for the treatment of pediatric lymphoblastic lymphoma: a report of the Italian Association of pediatric hematology and oncology. Pediatr Blood Cancer. 2009;53(6):953–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Sandlund JT, et al. Effective treatment of advanced-stage childhood lymphoblastic lymphoma without prophylactic cranial irradiation: results of St Jude NHL13 study. Leukemia. 2009;23(6):1127–30.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Asselin BL, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118(4):874–83.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Termuhlen AM, et al. Outcome of newly diagnosed children and adolescents with localized lymphoblastic lymphoma treated on Children’s Oncology Group trial A5971: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2012;59(7):1229–33.PubMedCrossRefGoogle Scholar
  117. 117.
    Uyttebroeck A, et al. Dexamethasone (DEX) versus prednisone (PRED) in T-cell non Hodgkin lymphoma (T-NHL): results of the randomized phase III trial 58951 of the EORTC Children Leukemia Group. Br J Haematol. 2012;159(Suppl. 1):37.Google Scholar
  118. 118.
    Bergeron C, et al. Treatment of childhood T-cell lymphoblastic lymphoma-long-term results of the SFOP LMT96 trial. Pediatr Blood Cancer. 2015;62(12):2150–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Wollner N, et al. Non-Hodgkin’s lymphoma in children. A comparative study of two modalities of therapy. Cancer. 1976;37(1):123–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Wollner N, Exelby PR, Lieberman PH. Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer. 1979;44(6):1990–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Reiter A, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage—a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13(2):359–72.PubMedCrossRefGoogle Scholar
  122. 122.
    Jin L, et al. Clinical features and prognosis of children with lymphoblastic lymphoma. Zhonghua Zhong Liu Za Zhi. 2012;34(2):138–42.PubMedGoogle Scholar
  123. 123.
    Kobayashi R, et al. Inferior outcomes of stage III T lymphoblastic lymphoma relative to stage IV lymphoma and T-acute lymphoblastic leukemia: long-term comparison of outcomes in the JACLS NHL T-98 and ALL T-97 protocols. Int J Hematol. 2014;99(6):743–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Sun XF, et al. Intensive chemotherapy improved treatment outcome for Chinese children and adolescents with lymphoblastic lymphoma. Int J Clin Oncol. 2008;13(5):436–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Gao YJ, et al. Clinical outcome of childhood lymphoblastic lymphoma in Shanghai China 2001-2010. Pediatr Blood Cancer. 2014;61(4):659–63.PubMedCrossRefGoogle Scholar
  126. 126.
    Sunami S, et al. Prognostic impact of intensified maintenance therapy on children with advanced lymphoblastic lymphoma: a report from the Japanese Pediatric Leukemia/Lymphoma Study Group ALB-NHL03 study. Pediatr Blood Cancer. 2016;63(3):451–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Termuhlen AM, et al. Disseminated lymphoblastic lymphoma in children and adolescents: results of the COG A5971 trial: a report from the Children’s Oncology Group. Br J Haematol. 2013;162(6):792–801.PubMedCrossRefGoogle Scholar
  128. 128.
    Sterba J, et al. Capizzi methotrexate with BFM backbone without craniospinal irradiation is effective treatment for pediatric lymphoblastic lymphoma: results from 5 countries with I-BFM LL 09 protocol. Br J Haematol. 2015;171(Suppl.1):33.Google Scholar
  129. 129.
    Mitsui T, et al. Retrospective analysis of relapsed or primary refractory childhood lymphoblastic lymphoma in Japan. Pediatr Blood Cancer. 2009;52(5):591–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Gross TG, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transplant. 2009;16(2):223–30.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Burkhardt B, et al. Outcome of adolescents with Non-Hodgkin Lymphoma in the BFM studies: Relevance of gender and histological subtype. In: 3rd International Symposium on Childhood, adolescent and young adult Non-Hodgkin’s Lymphoma. Frankfurt, Germany: Hematology meeting reports; 2009.Google Scholar
  132. 132.
    Cohen MH, et al. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist. 2008;13(6):709–14.PubMedCrossRefGoogle Scholar
  133. 133.
    Dunsmore KP, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(22):2753–9.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Winter SS, et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0434. Pediatr Blood Cancer. 2015;62(7):1176–83.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016(1):580–8.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Pileri SA, et al. Anaplastic large cell lymphoma: update of findings. Leuk Lymphoma. 1995;18(1–2):17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Stansfeld AG, et al. Updated Kiel classification for lymphomas. Lancet. 1988;1(8580):292–3.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Harris NL, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Morris SW, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.PubMedCrossRefGoogle Scholar
  140. 140.
    Delsol G, Jaffe ES, Falini B, Gascoyne RD, Muller-Hermelink HK, Stein H, Campo E, Kinney MC. Anaplastic Large Cell Lymphoma (ALCL), ALK-positive. In: Swerdlow S, Campo E, Harris NL, editors. WHO classification of tumors of the hematopoietic and lymphoid tissues. 4th ed. Lyon, France: IARC; 2008. p. 312–6.Google Scholar
  141. 141.
    Oschlies I, et al. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study. Haematologica. 2013;98(1):50–6.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Swerdlow SH, Webber SA, Chadburn A. Post-Transplant lymphoproliferative disorders. In: Swerdlow SH, Campo E, Lee Harris N, editors. WHO classification of tumors of the hematopoietic and lymphoid tissues. Lyon, France: International Agency for Research on Cancer (IARC); 2008. p. 343–51.Google Scholar
  143. 143.
    Adams SV, Newcomb PA, Shustov AR. Racial patterns of peripheral T-cell lymphoma incidence and survival in the United States. J Clin Oncol. 2016;34(9):963–71.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Mussolin L, et al. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. Leukemia. 2005;19(9):1643–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Grewal JS, et al. Highly aggressive ALK-positive anaplastic large cell lymphoma with a leukemic phase and multi-organ involvement: a report of three cases and a review of the literature. Ann Hematol. 2007;86(7):499–508.PubMedCrossRefGoogle Scholar
  146. 146.
    Kinney MC, et al. A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma. Am J Surg Pathol. 1993;17(9):859–68.PubMedCrossRefGoogle Scholar
  147. 147.
    Bayle C, et al. Leukaemic presentation of small cell variant anaplastic large cell lymphoma: report of four cases. Br J Haematol. 1999;104(4):680–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Onciu M, et al. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement is a clinicopathologic entity with an unfavorable prognosis. Report of three cases and review of the literature. Am J Clin Pathol. 2003;120(4):617–25.PubMedCrossRefGoogle Scholar
  149. 149.
    Spiegel A, et al. Paediatric anaplastic large cell lymphoma with leukaemic presentation in children: a report of nine French cases. Br J Haematol. 2014;165(4):545–51.PubMedCrossRefGoogle Scholar
  150. 150.
    Malcolm TI, et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7:10087.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Turner SD, et al. Anaplastic large cell lymphoma in paediatric and young adult patients. Br J Haematol. 2016;173(4):560–72.PubMedCrossRefGoogle Scholar
  152. 152.
    Iwahara T, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14(4):439–49.PubMedCrossRefGoogle Scholar
  153. 153.
    Borer RA, et al. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989;56(3):379–90.PubMedCrossRefGoogle Scholar
  154. 154.
    Perkins SL, et al. Childhood anaplastic large cell lymphoma has a high incidence of ALK gene rearrangement as determined by immunohistochemical staining and fluorescent in situ hybridisation: a genetic and pathological correlation. Br J Haematol. 2005;131(5):624–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Stein H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Zhang Q, et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol. 2002;168(1):466–74.PubMedCrossRefGoogle Scholar
  157. 157.
    Kasprzycka M, et al. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci U S A. 2006;103(26):9964–9.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Marzec M, et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene. 2007;26(38):5606–14.PubMedCrossRefGoogle Scholar
  159. 159.
    Marzec M, et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene. 2007;26(6):813–21.PubMedCrossRefGoogle Scholar
  160. 160.
    Nieborowska-Skorska M, et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 2001;61(17):6517–23.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Slupianek A, et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 2001;61(5):2194–9.PubMedGoogle Scholar
  162. 162.
    Marzec M, et al. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming. J Immunol. 2013;191(12):6200–7.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Werner MT, et al. Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target. Blood. 2017;129(7):823–31.PubMedCrossRefGoogle Scholar
  164. 164.
    Crescenzo R, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27(4):516–32.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Marzec M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U S A. 2008;105(52):20852–7.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Zhang Q, et al. IL-2R common gamma-chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK. Proc Natl Acad Sci U S A. 2011;108(29):11977–82.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Krenacs L, et al. Cytotoxic cell antigen expression in anaplastic large cell lymphomas of T- and null-cell type and Hodgkin’s disease: evidence for distinct cellular origin. Blood. 1997;89(3):980–9.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Foss HD, et al. Anaplastic large-cell lymphomas of T-cell and null-cell phenotype express cytotoxic molecules. Blood. 1996;88(10):4005–11.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Matsuyama H, et al. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood. 2011;118(26):6881–92.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Laurent C, et al. Circulating t(2;5)-positive cells can be detected in cord blood of healthy newborns. Leukemia. 2012;26(1):188–90.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Moti N, et al. Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Oncogene. 2015;34(14):1843–52.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Brugieres L, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Williams DM, et al. Anaplastic large cell lymphoma in childhood: analysis of 72 patients treated on The United Kingdom Children’s Cancer Study Group chemotherapy regimens. Br J Haematol. 2002;117(4):812–20.PubMedCrossRefGoogle Scholar
  174. 174.
    Brugieres L, et al. CD30(+) anaplastic large-cell lymphoma in children: analysis of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology. Blood. 1998;92(10):3591–8.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Seidemann K, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706.PubMedCrossRefGoogle Scholar
  176. 176.
    Rosolen A, et al. Anaplastic large cell lymphoma treated with a leukemia-like therapy: report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer. 2005;104(10):2133–40.PubMedCrossRefGoogle Scholar
  177. 177.
    Lowe EJ, et al. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52(3):335–9.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Brugieres L, et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27(30):5056–61.PubMedCrossRefGoogle Scholar
  179. 179.
    Woessmann W, et al. Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol. 2011;29(22):3065–71.PubMedCrossRefGoogle Scholar
  180. 180.
    Brugieres L, et al. Relapses of childhood anaplastic large-cell lymphoma: treatment results in a series of 41 children—a report from the French Society of Pediatric Oncology. Ann Oncol. 2000;11(1):53–8.PubMedCrossRefGoogle Scholar
  181. 181.
    Strullu M, et al. Hematopoietic stem cell transplantation in relapsed ALK+ anaplastic large cell lymphoma in children and adolescents: a study on behalf of the SFCE and SFGM-TC. Bone Marrow Transplant. 2015;50(6):795–801.PubMedCrossRefGoogle Scholar
  182. 182.
    Laver JH, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7.PubMedCrossRefGoogle Scholar
  183. 183.
    Alexander S, et al. Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized phase III trial of APO versus a modified regimen with vinblastine: a report from the children’s oncology group. Pediatr Blood Cancer. 2014;61(12):2236–42.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Le Deley MC, et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol. 2010;28(25):3987–93.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Le Deley MC, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6.PubMedCrossRefGoogle Scholar
  186. 186.
    Lamant L, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol. 2011;29(35):4669–76.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Damm-Welk C, et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2007;110(2):670–7.PubMedCrossRefGoogle Scholar
  188. 188.
    Damm-Welk C, et al. Flow cytometric detection of circulating tumour cells in nucleophosmin/anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: comparison with quantitative polymerase chain reaction. Br J Haematol. 2007;138(4):459–66.PubMedCrossRefGoogle Scholar
  189. 189.
    Mussolin L, et al. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis. Leukemia. 2013;27(2):416–22.PubMedCrossRefGoogle Scholar
  190. 190.
    Ait-Tahar K, et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood. 2010;115(16):3314–9.PubMedCrossRefGoogle Scholar
  191. 191.
    Mori T, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2006;132(5):594–7.PubMedCrossRefGoogle Scholar
  192. 192.
    Woessmann W, et al. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents—a Berlin-Frankfurt-Munster group report. Br J Haematol. 2006;133(2):176–82.PubMedCrossRefGoogle Scholar
  193. 193.
    Ruf S, et al. Risk-adapted therapy for patients with relapsed or refractory ALCL—Final Report of the Prospective ALCL-Relapse Trial of the EICNHL. In: Fifth International Symposium on Childhood Adolescent and Young Adult Non-Hodgkin Lymphoma. Varese, Italy: British Journal of Haematology; 2015. p. 45.Google Scholar
  194. 194.
    Shaw AT, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.PubMedCrossRefGoogle Scholar
  195. 195.
    Li J, et al. Insight into drug resistance mechanisms and discovery of potential inhibitors against wild-type and L1196M mutant ALK from FDA-approved drugs. J Mol Model. 2016;22(9):231.PubMedCrossRefGoogle Scholar
  196. 196.
    Mosse YP, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17(6):e254–62.PubMedCrossRefGoogle Scholar
  198. 198.
    Wang Y, et al. Structural insights into the pharmacophore of vinca domain inhibitors of microtubules. Mol Pharmacol. 2016;89(2):233–42.PubMedCrossRefGoogle Scholar
  199. 199.
    Pro B, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Younes A, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14(13):1348–56.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Cole PD, et al. Phase 2 trial of brentuximab vedotin and gemcitabine for pediatric and young adult patients with relapsed or refractory Hodgkin Lymphoma (HL): a Children’s Oncology Group (COG) report. J Clin Oncol. 2017;35:7527.CrossRefGoogle Scholar
  202. 202.
    Flerlage JE, et al. Pharmacokinetics, immunogenicity, and safety of weekly dosing of brentuximab vedotin in pediatric patients with Hodgkin lymphoma. Cancer Chemother Pharmacol. 2016;78(6):1217–23.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Mikles B, et al. Brentuximab vedotin (SGN-35) in a 3-year-old child with relapsed systemic anaplastic large cell lymphoma. J Pediatr Hematol Oncol. 2014;36(2):e85–7.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Koh KN, et al. Successful use of brentuximab vedotin for refractory anaplastic large cell lymphoma as a bridging therapy to haploidentical stem cell transplantation and maintenance therapy post-transplantation. Pediatr Blood Cancer. 2015;62(6):1063–5.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Fanale M, et al. Complete Remissions Observed in a Subset of Pediatric Patients with CD30-expressing Malignant Lymphomas Treated in Clinical Studies of Brentuximab Vedotin (SGN-35). In: European Multidisciplinary Cancer Congress; 2011; Stockholm, Sweden. p. S640.Google Scholar
  206. 206.
    Laimer D, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med. 2012;18(11):1699–704.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Tanaka H, et al. Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res. 2009;69(17):6987–94.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Singh VK, et al. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8(+) T cell responses in children with NPM-ALK(+) anaplastic large cell lymphoma. Clin Exp Immunol. 2016;186(1):96–105.CrossRefGoogle Scholar
  209. 209.
    Ait-Tahar K, et al. B and CTL responses to the ALK protein in patients with ALK-positive ALCL. Int J Cancer. 2006;118(3):688–95.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Chiarle R, et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat Med. 2008;14(6):676–80.PubMedCrossRefGoogle Scholar
  211. 211.
    Thomas L. On immunosurveillance in human cancer. Yale J Biol Med. 1982;55(3–4):329–33.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Burnet FM. Immunological surveillance in neoplasia. Transplant Rev. 1971;7:3–25.PubMedGoogle Scholar
  213. 213.
    Vajdic CM, et al. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood. 2010;116(8):1228–34.PubMedCrossRefGoogle Scholar
  214. 214.
    Shapiro RS. Malignancies in the setting of primary immunodeficiency: implications for hematologists/oncologists. Am J Hematol. 2011;86(1):48–55.PubMedCrossRefGoogle Scholar
  215. 215.
    Hayashi RJ, Wistinghausen B, Shiramazu B. Lymphoproliferative disorders and malignancies related to immunodeficiencies. In: Pizzo PA, Poplack DG, editors. Principles and practice of pediatric oncology. Philadelphia: Wolters Kluwers; 2016. p. 604–16.Google Scholar
  216. 216.
    Gross TG, Termuhlen AM. Pediatric non-Hodgkin lymphoma. Curr Hematol Malig Rep. 2008;3(3):167–73.PubMedCrossRefGoogle Scholar
  217. 217.
    Styczynski J, et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2013;57(6):794–802.PubMedCrossRefGoogle Scholar
  218. 218.
    Barker JN, et al. Low incidence of Epstein-Barr virus-associated posttransplantation lymphoproliferative disorders in 272 unrelated-donor umbilical cord blood transplant recipients. Biol Blood Marrow Transplant. 2001;7(7):395–9.PubMedCrossRefGoogle Scholar
  219. 219.
    Brunstein CG, et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood. 2007;110(8):3064–70.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Dumas PY, et al. Incidence and risk factors of EBV reactivation after unrelated cord blood transplantation: a Eurocord and Societe Francaise de Greffe de Moelle-Therapie Cellulaire collaborative study. Bone Marrow Transplant. 2013;48(2):253–6.PubMedCrossRefGoogle Scholar
  221. 221.
    Wistinghausen B, Gross TG, Bollard C. Post-transplant lymphoproliferative disease in pediatric solid organ transplant recipients. Pediatr Hematol Oncol. 2013;30(6):520–31.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Baker KS, et al. New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21(7):1352–8.PubMedCrossRefGoogle Scholar
  223. 223.
    Sanz J, Andreu R. Epstein-Barr virus-associated posttransplant lymphoproliferative disorder after allogeneic stem cell transplantation. Curr Opin Oncol. 2014;26(6):677–83.PubMedCrossRefGoogle Scholar
  224. 224.
    Collins MH, et al. Autopsy pathology of pediatric posttransplant lymphoproliferative disorder. Pediatrics. 2001;107(6):E89.PubMedCrossRefGoogle Scholar
  225. 225.
    Gross TG, Savoldo B, Punnett A. Posttransplant lymphoproliferative diseases. Pediatr Clin N Am. 2010;57(2):481–503, table of contents.CrossRefGoogle Scholar
  226. 226.
    Matthews K, et al. Indications, tolerance and complications of a sirolimus and calcineurin inhibitor immunosuppression regimen: intermediate experience in pediatric heart transplantation recipients. Pediatr Transplant. 2010;14(3):402–8.PubMedCrossRefGoogle Scholar
  227. 227.
    Gibelli NE, et al. Sirolimus in pediatric liver transplantation: a single-center experience. Transplant Proc. 2009;41(3):901–3.PubMedCrossRefGoogle Scholar
  228. 228.
    Weintraub L, et al. Identifying predictive factors for posttransplant lymphoproliferative disease in pediatric solid organ transplant recipients with Epstein-Barr virus viremia. J Pediatr Hematol Oncol. 2014;36(8):e481–6.PubMedCrossRefGoogle Scholar
  229. 229.
    Allen UD. The ABC of Epstein-Barr virus infections. Adv Exp Med Biol. 2005;568:25–39.PubMedCrossRefGoogle Scholar
  230. 230.
    San-Juan R, et al. Epstein-Barr virus-related post-transplant lymphoproliferative disorder in solid organ transplant recipients. Clin Microbiol Infect. 2014;20(Suppl 7):109–18.PubMedCrossRefGoogle Scholar
  231. 231.
    Stevens SJ, Pronk I, Middeldorp JM. Toward standardization of Epstein-Barr virus DNA load monitoring: unfractionated whole blood as preferred clinical specimen. J Clin Microbiol. 2001;39(4):1211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Savoldo B, et al. Cellular immunity to Epstein-Barr virus in liver transplant recipients treated with rituximab for post-transplant lymphoproliferative disease. Am J Transplant. 2005;5(3):566–72.PubMedCrossRefGoogle Scholar
  233. 233.
    Kanakry JA, et al. The clinical significance of EBV DNA in the plasma and peripheral blood mononuclear cells of patients with or without EBV diseases. Blood. 2016;127(16):2007–17.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Harris NL, Ferry JA, Swerdlow SH. Posttransplant lymphoproliferative disorders: summary of Society for Hematopathology Workshop. Semin Diagn Pathol. 1997;14(1):8–14.PubMedGoogle Scholar
  235. 235.
    Miloh T, et al. T-cell PTLD presenting as acalculous cholecystitis. Pediatr Transplant. 2008;12(6):717–20.PubMedCrossRefGoogle Scholar
  236. 236.
    Gross TG, et al. Low-dose chemotherapy and rituximab for posttransplant lymphoproliferative disease (PTLD): a Children’s Oncology Group Report. Am J Transplant. 2012;12(11):3069–75.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Gulley ML, et al. Tumor origin and CD20 expression in posttransplant lymphoproliferative disorder occurring in solid organ transplant recipients: implications for immune-based therapy. Transplantation. 2003;76(6):959–64.PubMedCrossRefGoogle Scholar
  238. 238.
    Ranganathan S, Jaffe R. Is there a difference between Hodgkin’s disease and a Hodgkin’s-like post-transplant lymphoproliferative disorder, and why should that be of any interest? Pediatr Transplant. 2004;8(1):6–8.PubMedCrossRefGoogle Scholar
  239. 239.
    Capello D, Gaidano G. Post-transplant lymphoproliferative disorders: role of viral infection, genetic lesions and antigen stimulation in the pathogenesis of the disease. Mediterr J Hematol Infect Dis. 2009;1(2):e2009018.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Morscio J, et al. Gene expression profiling reveals clear differences between EBV-positive and EBV-negative posttransplant lymphoproliferative disorders. Am J Transplant. 2013;13(5):1305–16.PubMedCrossRefGoogle Scholar
  241. 241.
    Allen U, et al. Gene expression using microarrays in transplant recipients at risk of EBV lymphoproliferation after organ transplantation: preliminary proof-of-concept. Pediatr Transplant. 2009;13(8):990–8.PubMedCrossRefGoogle Scholar
  242. 242.
    Styczynski J, et al. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant. 2009;43(10):757–70.PubMedCrossRefGoogle Scholar
  243. 243.
    Humar A, et al. A randomized trial of ganciclovir versus ganciclovir plus immune globulin for prophylaxis against Epstein-Barr virus related posttransplant lymphoproliferative disorder. Transplantation. 2006;81(6):856–61.PubMedCrossRefGoogle Scholar
  244. 244.
    Ghosh SK, et al. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood. 2012;119(4):1008–17.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Perrine SP, et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood. 2007;109(6):2571–8.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Hayashi RJ, et al. Posttransplant lymphoproliferative disease in children: correlation of histology to clinical behavior. J Pediatr Hematol Oncol. 2001;23(1):14–8.PubMedCrossRefGoogle Scholar
  247. 247.
    Gross TG, et al. Low-dose chemotherapy for Epstein-Barr virus-positive post-transplantation lymphoproliferative disease in children after solid organ transplantation. J Clin Oncol. 2005;23(27):6481–8.PubMedCrossRefGoogle Scholar
  248. 248.
    Webber SA, Harmon W, Faro A, Green M, Sarwal M, Hayashi R, Canter C, Thomas D, Jaffe R, Fine R. Anti-CD20 Monoclonal Antibody (rituximab) for Refractory PTLD after Pediatric Solid Organ Transplantation: Multicenter Experience from a Registry and from a Prospective Clinical Trial. In: American Society of Hematology Annual Meeting; 2004. p. Abstract 746.Google Scholar
  249. 249.
    Maecker-Kohlhoff B, Beier R, Zimmermann M, Schlegelberger B, Baumann U, Mueller CM, Pape L, Reiter A, Rossig C, Schubert S, Toenshoff B, Wingen A, Meissner B, Kebelmann-Betzing C, Henze G, Kreipe HH, Klein C. Response-adapted sequential immuno-chemotherapy of post-transplant lymphoproliferative disorders in pediatric solid organ transplant recipients: results from the prospective ped-PTLD 2005 trial. In: Loewenberg B, editor. American Society of Hematology. San Francisco, CA: The American Society of Hematology; 2014. p. 4468.Google Scholar
  250. 250.
    van Esser JW, et al. Prevention of Epstein-Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood. 2002;99(12):4364–9.PubMedCrossRefGoogle Scholar
  251. 251.
    Styczynski J, et al. Outcome of treatment of Epstein-Barr virus-related post-transplant lymphoproliferative disorder in hematopoietic stem cell recipients: a comprehensive review of reported cases. Transpl Infect Dis. 2009;11(5):383–92.PubMedCrossRefGoogle Scholar
  252. 252.
    Choquet S, et al. Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study. Blood. 2006;107(8):3053–7.PubMedCrossRefGoogle Scholar
  253. 253.
    Papadopoulos EB, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330(17):1185–91.PubMedCrossRefGoogle Scholar
  254. 254.
    Bollard CM, Rooney CM, Heslop HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9(9):510–9.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    O’Reilly RJ, et al. Biology and adoptive cell therapy of Epstein-Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol Rev. 1997;157:195–216.PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Bollard CM, et al. Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein-Barr virus-associated lymphoma. Cytotherapy. 2011;13(5):518–22.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Haque T, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Doubrovina E, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–56.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Leen AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–23.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Anurathapan U, et al. Kinetics of tumor destruction by chimeric antigen receptor-modified T cells. Mol Ther. 2014;22(3):623–33.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 2016;127(26):3331–40.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Vickers MA, et al. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol. 2014;167(3):402–10.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Heslop HE, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Naik S, et al. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol. 2016;137(5):1498–1505 e1.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    O’Reilly RJ, et al. Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transplant. 2016;51(9):1163–72.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Dharnidharka VR, Mohanakumar T. New approaches to treating B-cell cancers induced by Epstein-Barr virus. N Engl J Med. 2015;372(6):569–71.PubMedCrossRefGoogle Scholar
  267. 267.
    Ricciardelli I, et al. Towards gene therapy for EBV-associated posttransplant lymphoma with genetically modified EBV-specific cytotoxic T cells. Blood. 2014;124(16):2514–22.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pediatric Hematology-OncologyMount Sinai HospitalNew YorkUSA
  2. 2.Department of Pediatric Hematology and OncologyUniversity of MünsterMünsterGermany

Personalised recommendations